5 SEM TDC MTH M 3

2016

(November)

MATHEMATICS

(Major)

Course: 503

(Fluid Mechanics)

Full Marks: 80

Pass Marks: 32 (Backlog) / 24 (2014 onwards)

Time: 3 hours

The figures in the margin indicate full marks for the questions

(A) Hydrodynamics

(Marks: 35)

- 1. (a) Define ideal fluid. 1
 (b) State whether True or False: 1
 - A path line is the curve along which a particular fluid particle travels during its motion.

(c) Find the equation of the streamlines for the flow $\vec{q} = -\hat{i}(3y^2) - \hat{j}(6x)$ at the point (1, 1).

3

(d) Determine the acceleration at the point (2, 1, 3) at t = 0.5 if u = yz + t, v = xz - t and w = xy.

4

6

2. Deduce the equation of continuity in cylindrical coordinates.

Or

Show that

$$u = \frac{-2xyz}{(x^2 + y^2)^2}$$
, $v = \frac{(x^2 - y^2)z}{(x^2 + y^2)^2}$ and $w = \frac{y}{x^2 + y^2}$

are the velocity components of a possible liquid motion. Is this motion irrotational?

6

- 3. (a) Choose the correct answer:

 Euler's equation of motion in x direction
 is
 - (i) $\frac{Du}{Dt} = X \frac{1}{\rho} \frac{\partial p}{\partial x}$
 - (ii) $\frac{Du}{Dt} = X + \frac{1}{\rho} \frac{\partial p}{\partial x}$
 - (iii) $\frac{\partial u}{\partial t} = X \frac{1}{\rho} \frac{\partial p}{\partial x}$
 - (iv) $\frac{\partial u}{\partial t} = X + \frac{1}{\rho} \frac{\partial p}{\partial x}$

(Continued)

(b) If the motion of an ideal fluid, for which density is a function of pressure only, is steady and the external forces are conservative, then prove that there exists a family of surfaces which contain the streamlines and vortex lines.

Or

For a steady motion of inviscid incompressible fluid under conservative forces, show that the vorticity $\vec{\omega}$ and velocity \vec{q} satisfies

$$(\vec{q} \cdot \nabla) \vec{\omega} = (\vec{\omega} \cdot \nabla) \vec{q}$$
 5

4. State and prove Kelvin's circulation theorem.

Or

A portion of homogeneous fluid is contained between two concentric spheres of radii A and a, and is attracted towards their centre by a force varying inversely as the square of the distance. The inner spherical surface is suddenly annihilated, and when the radii of inner and outer surface of the fluid are r and R, the fluid impinges on a solid ball concentric with these surfaces. Prove that the impulsive pressure at any point of the ball for different values of R and r varies as

$$\left\{ (a^2 - r^2 - A^2 + R^2) \left(\frac{1}{r} - \frac{1}{R} \right) \right\}^{\frac{1}{2}}$$

(Turn Over)

5

- 5. (a) Define circulation.
 - (b) Answer either (i) or [(ii) and (iii)]
 - (i) Show that if the velocity potential of an irrotational motion is equal to

$$A(x^2 + y^2 + z^2)^{-\frac{3}{2}} \left(z \tan^{-1} \frac{y}{x}\right)$$

the lines of flow lie on the family of surfaces

$$x^{2} + y^{2} + z^{2} = k^{\frac{2}{3}} (x^{2} + y^{2})^{\frac{2}{3}}$$
Or

- (ii) Prove that there cannot be two different forms of irrotational motion for a given confined mass of incompressible inviscid liquid whose boundaries are subject to the given impulses.
- (iii) If Σ is the solid boundary of a large spherical surface of radius R, containing fluid in motion and also enclosing one or more closed surfaces, then show that the mean value of velocity potential Q on Σ is of the form

$$Q = \left(\frac{M}{R}\right) + C$$

where M, C are constants, provided that the fluid extends to infinity and is at rest there.

4

3

(B) Hydrostatics

(Marks: 45)

6. (a) Define specific gravity of a substance. 1

(b) Prove that the densities at two points in a fluid at rest under gravity and in the same horizontal plane are equal.

- (c) Prove that the surfaces of equal pressure are intersected orthogonally by the lines of force.
- 7. (a) A tube in the form of a parabola held with its vertex downwards and axis vertical, is filled with different liquids of densities δ and δ'. If the distance of the free surface of the liquids from the focus be r and r' respectively, show that the distance of their common surface from the focus is

$$\frac{r\delta - r'\delta'}{\delta - \delta'}$$

If the components parallel to the axes of the forces acting on an element of fluid at (x, y, z) be proportional to $y^2 + 2\lambda yz + z^2$, $z^2 + 2\mu zx + x^2$ and

$$x^2 + 2vxy + y^2$$

show that if equilibrium be possible, then $2\lambda = 2\mu = 2\nu = 1$.

(Turn Over)

2

3

6

Prove	that	the	pre	ssu	re	at	a	dep	th	z
below	the	sur	face	of	a	ho	mog	gen	eoi	18
liquid,	at	re	est	un	der	•	gra	vity	13	is
p = wz	z+Π,	whe	ere I	I is	th	e a	tmo	ospl	her	ic
pressi	ire a	nd :	w is	th	e v	vei	ght	of	ur	nit
volum	e of	the	liqui	d.						
	below liquid, p = wz pressu	below the liquid, at $p = wz + \Pi$, pressure a	below the sur- liquid, at re- $p = wz + \Pi$, whe pressure and	below the surface liquid, at rest $p = wz + \Pi$, where Π pressure and w is	below the surface of liquid, at rest un $p = wz + \Pi$, where Π is	below the surface of a liquid, at rest under $p = wz + \Pi$, where Π is the pressure and w is the variation.	below the surface of a holiquid, at rest under $p = wz + \Pi$, where Π is the apressure and w is the weight	below the surface of a homogliquid, at rest under graph $p = wz + \Pi$, where Π is the atmospressure and w is the weight	below the surface of a homogen liquid, at rest under gravity $p = wz + \Pi$, where Π is the atmosph pressure and w is the weight of	Prove that the pressure at a depth below the surface of a homogeneous liquid, at rest under gravity $p = wz + \Pi$, where Π is the atmospher pressure and w is the weight of unvolume of the liquid.

5

8. (a) Define centre of pressure.

1

(b) Prove that the whole pressure of a heavy homogeneous liquid on a plane area is equal to the product of the area and the pressure at its centre of gravity.

3

9. (a) Find the centre of pressure of a parallelogram immersed in a homogeneous liquid with one side in the free surface.

6

Or

A triangle ABC is immersed in a liquid, its plane being vertical and the side AB in the surface; if O be the centre of the circumscribed circle of ABC, prove that

 $\frac{\text{Pressure on the } \triangle AOC}{\text{Pressure on the } \triangle OCB} = \frac{\sin 2B}{\sin 2A}$

6

(b) A conical glass is filled with water and placed in an inverted position upon a table. Show that the resultant vertical thrust of the water on the glass is two-thirds that on the table.

Or

Find the resultant horizontal thrust in an assigned horizontal direction on a curved surface immersed in a heavy homogeneous liquid.

6

1

4

2

5

- 10. (a) Fill in the blank:

 If the ____ coincides with centre of gravity, the equilibrium is neutral.
 - (b) A body floats partly immersed in one liquid and partly in another. Find the condition of equilibrium.
 - (c) Define stable and unstable equilibrium.
- 11. Prove that the tangent at any point of surface of buoyancy is parallel to the corresponding plane of floatation.

Or

A solid body consists of a right cone joined to hemisphere on the same base and floats with the spherical portion partly immersed. Prove that the greatest height of the cone consistent with stability is $\sqrt{3}$ times the radius of the base.

5
