5 SEM TDC MTH M 1

2014

(November)

MATHEMATICS

(Major)

Course: 501

(Logic, Combinatorics and Analysis—III)

Full Marks: 80 Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

(A) Logic and Combinatorics

(Marks : 35)

- 1. (a) What do you mean by validity of an argument?
 - (b) Let p be 'Ravi is rich' and q be 'Ravi is happy'. Write the following statements in symbolic form:
 - (i) Ravi is poor but happy.
 - (ii) Ravi'is neither rich nor unhappy.

P15-1800/233

(Turn Over)

1

2

(c) Prove that $p \rightarrow q = p \lor q$.

S SEM TOC MIE M

3

4

Or

Using arithmetic representation, prove that $p \lor \sim p$ is a tautology.

(d) Prove that the following argument is valid:

$$P$$
 $P o q$
 $P o q$
 $P o q$
 $P o q$
 $Q o q$

2. (a) Define 'predicate'.

1

2

3

- (b) What do you mean by consequence?
- (c) Translate the following in symbols using quantifiers, predicate letter or individual variable:
 - (i) All judges are lawyers.
 - (ii) Not all lawyers are judges.
 - (iii) Any one can do this.
- (d) Answer any one of the following:
 - (i) Let S(x): x is a soldier.

G(x): x is ignorant.

I(x): x is Indian.

Then show that $(\exists x)(S(x) \land G(x))$, $(\exists x)(I(x) \land G(x)) \models (\exists x)(S(x) \land I(x))$

(ii)	Every	memb	er of the	comm	ittee is
	old	and	academ	ician.	Some
	members of the committee are ric				
. 6	There	fore,	there	are	some
	rich	acade	emicians.	Der	ive it
	mathe	ematica	ally.		11/15

(a) State Vander Monde's identity.

z≥3?

(b) How many solutions are thereof x+y+z=17 such that $x \ge 1$, $y \ge 2$ and 2

1

4

1

(c) Define Stirling numbers. Prove that

$$[x]^n = \sum_{k=1}^n U(n, k)[x]_k$$

where
$$u(n, k) = \frac{\lfloor n \rfloor}{\lfloor k \rfloor} C(n-1, k-1)$$
 1+3=4

Or

Define multinomial theorem. Prove that in $(2x-3y+5z)^8$, the coefficient $x^3 y^3 z^2$ is $(2)^3 (-3)^3 (5)^2 (560)$.

(a) State the principle of inclusionexclusion for three sets.

How many integers between 500 to (b) 1000 are divisible by 3 or 5? 3 (c) There are 300 boxes with mangoes. Each contains no more than x mangoes. Find the maximum possible value of x such that 3 boxes containing equal number of mangoes.

4

Or .

Define exponential-generating function. Find the generating function for the sequence $1, 3, 9, ..., 3^n, ...$

(B) Analysis—III (Complex Analysis)

(Marks: 45)

5. (a) Define an analytic function.

1

- (b) Show that $e^x(\cos y + i\sin y)$ is an analytic function. Find its derivative. 2+2=4
- (c) Show that the function $f(z) = \sqrt{|xy|}$ satisfies Cauchy-Riemann equation at the origin but not analytic at that point.

5

Or

Find the imaginary part of the analytic function whose real part is $x^3 - 3xy^2 + 3x^2 - 3y^2$.

6.	(a)	Define simply connected domain. 1
	(b)	Find the value of the integral
		$\int_{0}^{1+i} (x - y + ix^{2}) dz$
		along the straight line from $z=0$ to $z=1+i$.
	(c)	State and prove Cauchy's integral formula.
	(d)	Evaluate (any two):
		(i) $\int_C \frac{e^z}{(z-1)(z-4)} dz$, where C is the circle $ z =2$ by using Cauchy's integral formula
		(ii) $\int_C \frac{3z^2 + z}{z^2 - 1} dz$, where C is $ z - 1 = 1$
		(iii) $\int_C \frac{e^{zt}}{z^2 + 1} dz$, where $t > 0$, C is $ z = 3$
7.	(a)	State and prove Laurent's series. 1+5=6
	<i>a</i> 1	$\frac{1}{2}$ in $ z < 1$.

8. (a) Define removable singularity of a function f(z).

 $z^2 + 5z + 6$

(b) Find the pole of $f(z) = \frac{\sin(z-a)}{(z-a)^4}$.

2

(c) Evaluate (any two):

(i)
$$\int_0^{2\pi} \frac{d\theta}{2 + \cos\theta}$$

(ii)
$$\int_0^{2\pi} \frac{d\theta}{5 - 4\sin\theta}$$

(iii)
$$\int_C \frac{dz}{z^2(z+1)(z-1)}$$
, where C is $|z| = 3$

(iv)
$$\int_{-\infty}^{\infty} \frac{\cos ax}{x^2 + 1} dx$$

**