5 SEM TDC MTH M 2

2014

(November)

MATHEMATICS

(Major) old ast wwant.

Course: 502

(Linear Algebra and Number Theory)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP—A

(Linear Algebra)

(Marks : 40)

1. Answer the following questions:

 $1 \times 4 = 4$

- (a) Define subspace of a vector space.
- (b) Let V be a vector space over same field K. Show that

 $k(-\nu) = -k\nu, \ k \in F, \ \nu \in V$

- (c) Define kernel of a linear mapping.
- (d) Find the matrix of the linear operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$T(x, y) = (2x - 3y, x + y)$$

with the usual basis.

- 2. Answer the following questions:
 - (a) Determine whether u = (3, 4) and v = (1, -3) are linearly dependent.
 - (b) Let V be a vector space over K and $W \subseteq V$. Show that W is a subspace of V iff
 - (i) $0 \in W$;
 - (ii) $u, v \in W \Rightarrow \alpha u + \beta v \in W, \forall \alpha, \beta \in K.$ 3
 - (c) Find, for what value of k, the vector u = (1, -2, k) in \mathbb{R}^3 is a linear combination of the vectors v = (3, 0, -2) and w = (2, -1, -5).
 - (d) Let W be the subspace of \mathbb{R}^4 generated by the vectors (1, -2, 5, -3), (2, 3, 1, -4), (3, 8, -3, -5). Find a basis of W.
 - (e) Prove that a vector space V is the direct sum of its subspaces U and W, iff
 - (i) V = U + W
 - (ii) $U \cap W = \{0\}$

2

3

3

- (f) Examine whether the following mappings are linear or not:
 - (i) $T: \mathbb{R}^3 \to \mathbb{R}$ defined by T(x, y, z) = 2x 3y + 4z

4

- (ii) $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (|x|, 0)
- 3. Answer any *three* of the following questions: 6×3=18
 - (a) Show that any two bases of a finitedimensional vector space have same number of elements.
 - (b) Let $T: V \to U$ be a linear transformation. Show that

 $\dim V = \operatorname{rank} \text{ of } T + \operatorname{nullity} \text{ of } T$

(c) If V is a finite-dimensional vector space and W is a subspace of V, then show that

 $\dim (V/W) = \dim V - \dim W$

(d) Prove that the row rank and the column rank of an $m \times n$ matrix $A = (a_{ij})$ are equal.

GROUP-B

(Number Theory)

(Marks : 40)

Answer the following questions:

 $1 \times 4 = 4$

If g.c.d. (a, b) = d, then show that g.c.d. $\left(\frac{a}{d}, \frac{b}{d}\right) = 1$

If [n] denotes the largest integer $\leq n$, (b) then find the value of

$$\left[\frac{50}{3}\right] + \left[\frac{50}{3^2}\right] + \left[-\frac{50}{3^3}\right]$$

- State Fermat's little theorem. (c)
- What is the value of $\alpha(n)$, if n is prime? (d)
- Answer the following questions:

2×3=6

- Prove that every non-empty subset of N contains a least element.
- (b) If p is a prime and $p \mid ab$, then prove that $p \mid a$ or $p \mid b$, where $a, b \in \mathbb{Z}$.
- For any prime p, show that $\phi(p) = p 1$. (c)
- Answer the following questions: 3×6=18

Prove that $an \equiv bn \pmod{m}$, if and only if

$$a \equiv b \left(\bmod \frac{m}{(m, n)} \right)$$

- (b) Find the remainder when $2^{73} + 14^3$ is divided by 11.
- (c) Solve 5x + 11y = 92.
- (d) Solve the system $x \equiv 6 \pmod{17}$ $x \equiv 17 \pmod{24}$ $x \equiv 13 \pmod{33}$
- (e) Prove that $P(n) = n^{\frac{d(n)}{2}}$.
- (f) Prove that there are infinitely many primes of the form 4n+3.
- **7.** Answer any three of the following: $4\times3=12$
 - (a) State and prove the division algorithm.
 - (b) Prove that every positive integer (> 1) can be expressed as a product of primes is unique apart from the order of factors.
 - (c) Prove that

$$\sum_{d\mid n}\mu(d) = \begin{cases} 1 & \text{if } n=1\\ 0 & \text{if } n>1 \end{cases}$$

(d) State and prove Chinese remainder theorem.

* * *