#### 5 SEM TDC MTH M 1

2013

(November)

#### **MATHEMATICS**

(Major)

Course: 501

( Logic and Combinatorics, and Analysis—III )

Full Marks: 80 Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

## (A) Logic and Combinatorics

( Marks: 35 )

- 1. (a) Define truth function.
  - (b) Let P be 'it is cold' and Q be 'it is raining'. Give verbal sentence which describes each of the following:
    - (i) Pv~O
    - (ii) ~ P ~ O

14P-1200/302

(Turn Over)

1

2

|    | (c) | Construct the truth table for $(p \land q) \rightarrow p$ .<br>State whether it is a tautology or not.                       | 3 |
|----|-----|------------------------------------------------------------------------------------------------------------------------------|---|
|    | (d) | Prove that every truth function can be generated by ~, ^ and v. Can you generate a truth function by using ~ and ^ only?  Or | 4 |
|    |     | Give the arithmetic representation of the form $\sim P,\ P\vee Q,\ P\wedge Q,\ P\to Q.$ Also show that $P\vee \sim P=1.$     |   |
| 2. | (a) | What do you mean by equivalent statements?                                                                                   | 1 |
|    | (b) | Write the rule $p$ and rule $t$ .                                                                                            | 2 |
|    | (c) | Translate into symbols:                                                                                                      | 3 |
|    |     | <ul><li>(i) Not all birds can fly.</li><li>(ii) Anyone can do it.</li><li>(iii) Some people are intelligent.</li></ul>       |   |
|    | (d) | Derive any one of the following:                                                                                             | 4 |
|    |     | (i) Everyone who buys a ticket receives a prize. Therefore, if there is no prize, there nobody buys ticket.                  |   |
|    |     | (ii) All men are mortal. Ram is man.<br>Hence Ram is mortal.                                                                 |   |

3. (a) State the Pascal's identity.

1

(b) Find the coefficient of  $x_1^2 x_2^3 x_4^5 x_5^7$  in  $(x_1 + x_2 + x_3 + x_4 + x_5)^{17}$ .

2

4

(c) Define Ramsey number R(p, q). Prove that R(4, 3) = 9.

Or

Define Catalan numbers. Prove that *n*th Catalan number

$$C_n = \frac{2^{n-1} \{1 \cdot 3 \cdot 5 \cdot \cdots (2n-3)\}}{\lfloor n \rfloor}$$

4. (a) State the pigeonhole principle.

(b) How many integers between 100 and 700 are divisible by 3 or 5?

3

(c) Prove that given any 12 natural numbers we can choose 2 of them such that their difference is divisible by 11.

4

Or

Define binomial generating function. Find both binomial and exponential generating functions for the sequence 2, 2, 2, 2, ...

# (B) Analysis—III (Complex Analysis)

( Marks: 45 )

5. (a) State the condition under which a function is said to be analytic.

(b) Define harmonic function. Show that  $u(x, y) = x^4 - 6x^2y^2 + y^4$  is harmonic.

State and prove the necessary conditions for a function f(z) = u + iv to be analytic at all points in a region R.

Or

Show that

$$f(z) = \frac{x^2 y^5 (x + iy)}{x^4 + y^{10}}, \quad z \neq 0$$
$$f(0) = 0 \qquad , \quad z = 0$$

is not analytic at the origin, although Cauchy-Riemann equations are satisfied. What is your opinion in this case?

6. (a) Define Jordan's arc.

(b) Find the value of the integral

$$\int_0^{1+i} (x^2 - iy) dz$$

where y = x.

State and prove Cauchy's integral 2 (c) 5 14P-1200/302

(Continued)

1

3

6

1

(d) If a function f(z) is analytic for all finite values of z and is bounded, then show that it is constant.

6

Or

### Evaluate:

(i) 
$$\int_C \frac{2z+1}{z^2+z} dz$$
, where C is  $|z| = \frac{1}{2}$ 

(ii) 
$$\int_C \frac{dz}{z-a}$$
, where C is  $|z-a|=r$ 

- 7. (a) State and prove Taylor's series. 1+5=6
  - (b) Expand  $f(z) = \frac{1}{(z+1)(z+3)}$  in Laurent's series, where |z| > 3.
  - 8. (a) Define an isolated singular point of a function f(z).
    - (b) Discuss the singularity of

$$\frac{\cot \pi z}{(z-a)^2}$$

at z = a,  $z = \infty$ .

2

(c) Evaluate (any two):

(i) 
$$\int_0^{2\pi} \frac{d\theta}{5 - 3\cos\theta}$$

(ii) 
$$\int_0^\infty \frac{dx}{1+x^2}$$

(iii) 
$$\int_C \frac{z^2 dz}{(z-1)^2 (z+2)}$$
, where C is  $|z| = 3$ 

(iv) 
$$\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+4)}$$

\*\*\*