5 SEM TDC MTH M 2

2013

(November)

MATHEMATICS

(Major)

Course: 502

(Linear Algebra and Number Theory)

Full Marks: 80 Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Linear Algebra)

(Marks: 40)

1. Answer the following questions:

 $1 \times 4 = 4$

- (a) Under what condition, two systems of linear equations over the same field are said to be equivalent?
- (b) Write the standard basis for the vector space $\mathbb{R}^3(\mathbb{R})$.

(c)	Define	null	space	of	a	linear
	transfor					

- (d) Let $T: V \to W$ be a linear map given by T(v) = 0, $\forall v \in V$. What will be the kernel of T?
- 2. Answer the following questions:
 - (a) Find the dimension of the quotient space \mathbb{R}^3/W , where W is the subspace of \mathbb{R}^3 spanned by (1, 1, 0) and (1, 0, 0).
 - (b) If α_1 and α_2 are the vectors of V(F) and $a, b \in F$, then prove that

$$\{\alpha_1, \alpha_2, a\alpha_1 + b\alpha_2\}$$

is linearly dependent.

(c) Show that the subset $W = \{(a, b, c) : a+b+c=0\}$ of $\mathbb{R}^3(\mathbb{R})$ is a subspace of $\mathbb{R}^3(\mathbb{R})$.

- (d) Prove that the intersection of any two subspaces of a vector space is also a subspace of the vector space.
- (e) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $T(x_1, x_2) = (x_1 + x_2, x_2, x_2)$

Find the matrix of T w.r.t. the standard bases of \mathbb{R}^2 and \mathbb{R}^3 respectively.

2

3

3

3

- (f) If \mathbb{R} be the field of real numbers, then prove that the vectors (a, b) and (c, d) in \mathbb{R}^2 are linearly dependent if and only if ad bc = 0.
- 3. Answer any *three* of the following questions: $6\times3=18$
 - (a) Define affine space. Let W be a subspace of a vector space V and $v \in V$ be fixed. Prove that $S = \{v + W \mid v \in V\}$ is an affine space.
 - (b) Let T be a linear transformation from V into W. Then prove that T is non-singular if and only if T carries each linearly independent subset of V onto a linearly independent subset of W.
 - (c) Show that the mapping $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined as T(a, b) = (a+b, a-b, b) is a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 . Find the rank, null space and nullity of T.
 - (d) If W_1 and W_2 are finite-dimensional subspaces of a vector space V, then prove that $W_1 + W_2$ is finite-dimensional and

 $\dim \ W_1 + \dim \ W_2 = \dim \left(W_1 \cap W_2\right) \\ + \dim \left(W_1 + W_2\right)$

4

GROUP-B

(Number Theory)

(Marks: 40)

4. Answer the following questions:

 $1 \times 4 = 4$

- (a) Write the well-ordering principle (WOP) of positive integers.
 - (b) If $a, b \in Z^+$ and there exists $x, y \in Z$ such that ax + by = 1, then write the value of (a, b).
 - (c) Define Euler's function $\phi(n)$.
 - (d) Write a reduced set of residues mod 10.
- 5. Answer the following questions :

 $2\times3=6$

- (a) Show that the difference between any integer and its cube is always divisible by 6.
- (b) If g.c.d. (a, b) = d, then prove that g.c.d. $\left(\frac{a}{d}, \frac{b}{d}\right) = 1$
- (c) Under which situation, an arithmetic function is said to be a multiplicative function? Is the function $\sigma(n)$ defined as the sum of the divisors of n, multiplicative?

6. Answer the following questions: 3×6=18

- Prove that if $a \equiv b \pmod{m}$ and (a) $a \equiv b \pmod{n} (m, n) = 1$, then $a = b \pmod{mn}$
- (b) Solve in integers:

$$7x + 5y = 5$$

- By the principle of mathematical (c) induction, prove that $3^{2n} - 1$ is divisible by 8, $\forall n \in \mathbb{N}$.
- Find the highest power of 5 which is (d) contained in 500!.
- Is the system of linear congruence given (e) below solvable? Give reasons for your answer:

 $x \equiv 5 \pmod{8}$

 $x \equiv 9 \pmod{12}$

 $x \equiv 3 \pmod{18}$

- Find the value of the following: (f)
 - (i) $\sigma_{2}(6)$
 - (ii) \$\phi(700)\$
- 7. Answer any three of the following: $4 \times 3 = 12$
 - If q = (a, b), then prove that there exist (a) integers x and y such that g = ax + by.

- (b) State Fermat's little theorem. Using Fermat's little theorem, find the remainder when 13⁷³ +14³ is divided by 11.
- (c) Prove that there are infinitely many primes.
- (d) Prove that for $n \ge 1$, $n \in \mathbb{Z}$

$$n = \sum_{d|n} \phi(d)$$

* * *