5 SEM TDC PHY M 1

2019

(November)

PHYSICS

(Major)

Course: 501

(Mathematical Physics)

Full Marks: 60
Pass Marks: 24/18

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct answer from the following (any six): 1×6=6

(a)
$$\frac{1}{D^2-1}x^2$$
 is equal to
(i) x^2+2x+2
(ii) $-(x^2+2x+2)$
(iii) $2x-x^2$
(iv) $-(2x-x^2)$

- (b) The equation $y^2 dx + (x^2 xy y^2) dy = 0$ is
 - (i) exact
 - (ii) inexact
 - (iii) Both (i) and (ii)
 - (iv) None of the above
- (c) If $P_n(x)$ be a Legendre polynomial of order n, then $\left[\frac{d}{dx}P_n(x)\right]_{x=1}$ is
 - (i) n(n+1)
 - (ii) $\frac{n(n+1)}{2}$
 - (iii) $\frac{1}{2}(n+1)$
 - (iv) $\frac{n+1}{2n}$
- (d) Which of the following functions is not analytic everywhere?
 - (i) $e^{\sin z}$
 - (ii) log z
 - (iii) ez
 - $(iv) \sin z$

- (e) Residues at two poles of the function $f(z) = \frac{z}{z^2 + 4}$ are
 - (i) equal and opposite in sign
 - (ii) equal with same sign
 - (iii) all together different
 - (iv) inverse of each other
- (f) According to Fourier expansion of x^2 , the value of $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is
 - (i) $\frac{\pi^2}{3}$
 - (ii) $\frac{\pi^2}{4}$
 - (iii) $\frac{\pi^2}{6}$
 - (iv) $\frac{\pi^2}{12}$
- (g) The Fourier series expansion of x^2 in the interval $-\pi < x < \pi$ contains
 - (i) sine and cosine terms of integral multiples of x
 - (ii) only cosine terms of integral multiple of x
 - (iii) only sine terms of integral multiple of x
 - (iv) only cosine terms of even multiples of x

2. Answer any six of the following:

2×6=12

- (a) Find the Fourier series expansion for the output of a half-wave rectifier having period $\frac{2\pi}{\omega}$, where ω is angular frequency.
- (b) Show that $(n+1) P_{n+1}(x) = (2n+1) x P_n(x) n P_{n-1}(x)$
- (c) State Cauchy's theorem and Cauchy's integral formula.
- (d) Show that

$$\Gamma\left(\frac{1}{3}\right)\Gamma\left(\frac{2}{3}\right) = \frac{2\pi}{\sqrt{3}}$$

- (e) Find the Fourier series of the function $f(x) = e^x$ in the interval $-\pi < x < \pi$.
- (f) Examine whether sin z is an analytic function of z.
- (g) What do you mean by order and degree of a differential equation? Explain with two examples.
- **3.** (a) For the Legendre polynomials, prove the following integral:

$$\int_{-1}^{+1} P_l(x) P_m(x) dx = 0 \ (l \neq m)$$

(b) What are differential equations? Explain the importance of differential equations in physical problems. What do you mean by the term solution of differential equation? 1+1+1=3

Or

Show that for |x| is large, erfc (x) = 1 - erf(x).

(c) Solve the following differential equation by Frobenius method:

 $2x^{2}\frac{d^{2}y}{dx^{2}} - x\frac{dy}{dx} + (1 - x^{2})y = 0$

Or

Solve the equation in series

$$9x (1-x) \frac{d^2y}{dx^2} - 12 \frac{dy}{dx} + 4y = 0$$

(d) Show that

$$\beta(m, n) = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)} \quad \text{for } m > 0, \ n > 0$$

(e) Find the solution of the differential equation

$$(x+2y)(dy-2dx)+dx+2dy=0$$
 4

(Turn Over)

5

Or

Solve:

$$y(y^2-2x^2) dx + x(2y^2-x^2) dy = 0$$
 4

4. (a) Prove Cauchy's integral formula and apply it to evaluate the integral

$$\int_{C} \frac{2z+1}{z^2+z} dz, \text{ where } C \text{ is } |x| = \frac{1}{2} \qquad 3+2=5$$

(b) Prove by contour integration method

$$\int_{0}^{\pi} \frac{ad\theta}{a^2 + \sin^2 \theta} = \frac{\pi}{\sqrt{1 + a^2}}, \ a > 0$$

Or

Obtain Laurent series expansion of

$$f(z) = \frac{1}{z^2 - 3z + 2}$$
 in the region $1 < |z| < 2$

- 5. (a) By using Fourier series, expand the function $y = \cos 2x$ in a series of sines in the interval $(0, \pi)$.
 - (b) Find the series of sines and cosines of multiples of x which represents f(x) in the interval $-\pi < x < \pi$, where

$$f(x) = 0$$
, when $-\pi < x \le 0$
= $\frac{\pi x}{4}$, when $0 < x \le \pi$

4

and hence deduce

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$$

Or

What are odd and even functions? Find a series of sines and cosines of multiple of x; which will represent $x + x^2$ in the interval $-\pi < x < \pi$. Deduce that

$$\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots$$
 5

(c) A sawtooth wave is given by

$$f(x) = \begin{cases} 0, & \text{for } -\pi < x < 0 \\ h, & \text{for } 0 \le x < \pi \end{cases}$$
Show that
$$f(x) = \frac{h}{2} + \frac{2h}{\pi} \sum_{n=1}^{\infty} \frac{\sin nx}{n}$$

