5 SEM TDC PHY M 2

2019

(November)

PHYSICS

(Major)

Course: 502

(Electrodynamics)

Full Marks: 60
Pass Marks: 24 /18

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following: 1×6=6
 - (a) In electromagnetic wave, the rate of energy transmitted across a unit area perpendicular to the direction of flow, is

(i)
$$S = \frac{(E \times B)}{\mu_0}$$

(ii)
$$S = \frac{(E \times B)}{2\mu_0}$$

(iii)
$$S = \frac{(E_0 \times B_0)}{\mu_0}$$

(iv)
$$S = \frac{(E_0 \times B_0)}{2\mu_0}$$

- (b) The relation of the induced electric field generated by a changing magnetic flux is called
 - (i) Gauss' law for electric field
 - (ii) Gauss' law for magnetic field
 - (iii) Faraday's law of induction
 - (iv) generalized Ampere's law
- (c) The coefficient of transmission at the interface between two dielectrics is

(i)
$$T = \frac{(n_1 - n_2)^2}{(n_1 + n_2)^2}$$

(ii)
$$T = \frac{(n_1 + n_2)^2}{(n_1 - n_2)^2}$$

(iii)
$$T = \frac{2n_1n_2}{(n_1 + n_2)^2}$$

(iv)
$$T = \frac{4n_1n_2}{(n_1 + n_2)^2}$$

- (d) In a good conductor, the phase difference between E vector and H vector is
 - (i) 180°
 - (ii) 90°
 - (iii) 60°
 - (iv) 45°

- (e) A rod has a length of 1 m. It is moving in a spaceship with a velocity of 0.4c relative to the earth. The length as measured by an observer on spaceship is
 - (i) 1 m
 - (ii) 0.4 m
 - (iii) 1·4 m
 - (iv) $\frac{1}{0.4}$ m
- (f) Which of the following waves can be considered as circularly polarised wave?
 - (i) $E_x = E_2 \cos(\omega t kz)$, $E_y = 0$
 - (ii) $E_x = E_2 \cos(\omega t kz)$, $E_y = E_2 \cos(\omega t + kz - \frac{\pi}{2})$
 - (iii) $E_x = E_3 \cos(\omega t + kz)$, $E_y = E_3 \cos\omega t$
 - (iv) $E_x = E_4 \cos(\omega t kz)$, $E_y = E_5 \cos(\omega t + kz)$

2. Answer the following in brief:

2×6=12

- (a) Describe briefly the term 'displacement current'.
- (b) In the context of electromagnetic waves in a conducting medium, what are the factors on which the skin depth depends?
- (c) Write down the Maxwell's electromagnetic equations in differential and integral form.
- (d) Describe the failure of Galilean transformation.
- (e) What do you mean by Poynting vector? Explain the significance of the Poynting's theorem.
- (f) Write down the boundary conditions to be satisfied by electromagnetic waves across a boundary.
- Show that the total power radiated by an accelerated charge particles at low velocity is

$$P = \frac{1}{4\pi\epsilon_0} \left(\frac{2e^2a^2}{3c^3} \right)$$

where the terms have usual meanings.

Or

Find out the power radiated by an oscillating electric dipole and describe its angular distribution.

5

4. State Maxwell's equation for a system of charges and currents. Show that energy density of electromagnetic field is given by

$$u = \frac{1}{2} \left(E_0^2 \varepsilon_0 + H^2 \mu_0 \right)$$
 4

Describe Fresnel's equation for the propagation of light in crystalline media on the basis of electromagnetic theory.

5

6. Using Maxwell's equations, describe the propagation of electromagnetic waves in a non-conducting medium.

4

7. (a) Discuss the phenomenon of total internal reflection on the basis of electromagnetic waves.

4

(b) Derive the equation for phase velocity of electromagnetic wave propagating in conducting medium.

5

- 8. (a) State the postulates of special relativity and deduce from them the Lorentz transformation equations. 2+4=6
 - (b) Derive Einstein velocity addition rule.

Or

Define proper and non-proper intervals of space and time. 2+2=4

9. Derive the expression for the kinetic energy of a relativistic particle; hence deduce the Einstein mass energy relation.

3+2=5
