5 SEM TDC PHY M 3

2019

(November)

PHYSICS

(Major)

Course: 503

(Atomic and Molecular Physics)

Full Marks: 60
Pass Marks: 24/18

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following (any six): 1×6=6
 - (a) In normal Zeeman effect, a level of given l splits into
 - (i) 1 levels
 - (ii) 21 levels
 - (iii) (2l+1) levels
 - (iv) (2l-1) levels

- (b) The number of fine structure lines of H_{α} line, according to vector atom model, is
 - (i) 2
 - (ii) 3
 - (iii) 4
 - (iv) 5
- (c) The probability of spontaneous emission increases as
 - (i) v
 - (ii) v^2
 - (iii) v³
 - (iv) v^{-1}

where v is the frequency of the exciting radiation.

- (d) The radius of the first Bohr orbit is a_0 . The electron in the n-th orbit has a radius
 - (i) na₀
 - (ii) $\frac{a_0}{n}$
 - (iii) n^2a_0
 - (iv) $\frac{a_0}{n^2}$

- (e) Frequency of Raman lines depends upon
 - (i) frequency of incident line
 - (ii) the scattering substance
 - (iii) intensity of incident light
 - (iv) strength of the field
- (f) He-Ne laser is
 - (i) two-level laser
 - (ii) three-level laser
 - (iii) four-level laser
 - (iv) no-level laser
- **2.** Answer any six of the following: $2 \times 6 = 12$
 - (a) State the selection rule for pure rotational spectra and Raman spectra.
 - (b) Calculate Landé splitting factor for S-electron.

(c) What is the precessional frequency of an electron orbital when placed in a magnetic field of 6T?

(Given

$$e = 1.6 \times 10^{-19} \text{ C}$$

and $m = 9.1 \times 10^{-31} \text{ kg}$

- (d) State and explain the population inversion for laser.
- (e) Mention the drawbacks of Sommerfeld's atom model.
- (f) When benzene is irradiated with mercury line 4358 Å, a Raman line is observed at the same position as the argon line $\lambda = 4201$ Å. Calculate the wave number of the corresponding absorption line of benzene.
- (g) Define gyromagnetic ratio and show that spin gyromagnetic ratio is twice the orbital gyromagnetic ratio.

- 3. (a) State and prove Bohr's correspondence principle. Justify the statement, "the greater the quantum number closer the quantum physics approaches classical physics".

 1+4+1=6
 - (b) Describe the main features of the vector atom model. Explain various quantum numbers associated with it. 2+4=6
 - (c) What is Larmor precession? Derive the expression for Larmor frequency. The angular momentum vector \overrightarrow{L} never points in the Z direction. Why? 2+2+1=5

Or

Hydrogen atom in its ground state is excited by means of a monochromatic radiation of wavelength 970.6 Å. How many different wavelengths are possible in the resulting emission spectrum? Find the longest wavelength amongst these.

5

4. What is meant by fine structure of hydrogen spectra? How is it explained on the basis of spin-orbit interaction?

1+5=6

Or

What is Zeeman effect? How can you find e/m of an electron from Zeeman effect? The Zeeman components of a 500 nm spectral line are 0.0116 nm apart, when magnetic field is 0.00 T. Find the ratio of e/m for the electron. $1+2\frac{1}{2}+2\frac{1}{2}=6$

- 5. (a) Define Einstein's co-efficients A_{12} and B_{12} . In what situation may A_{12}/B_{12} be small enough for laser action? 2+2=4
 - (b) Explain the origin of the vibrational spectrum of a diatomic molecule. In which region of the electromagnetic spectra do the vibrational spectra of molecules lie? Show that vibrational energy is not zero even at the lowest vibrational level.

 3+1+2=6

Or

Why do molecules show band spectra rather than line spectra? In an experiment in the Raman effect using mercury green radiation of $\lambda = 546 \cdot 1$ nm of Stokes lines of wavelength $554 \cdot 3$ nm was observed. Find the Raman shift and the wavelength corresponding to the anti-Stokes lines. 2+4=6

20P/316

- 6. Write short notes on any three of the following:

 3×3=9
 - (a) Landé's g-factor
 - (b) Spatial and temporal coherence
 - (c) Space quantization
 - (d) Stark effect
