5 SEM TDC PHY M 2

2018

(November)

PHYSICS

(Major)

Course: 502

(Electrodynamics)

Full Marks: 60
Pass Marks: 24 /18

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following: 1×6=6
 - (a) The refractive indices of glass and water are 1.54 and 1.33 respectively. The polarizing angle for a beam incident from water to glass is
 - (i) 33°
 - (ii) 40°52′
 - (iii) 49°8'
 - (iv) 57°

- (b) Which of the following statements is wrong?
 - (i) The electromagnetic waves travel with the same speed in all media.
 - (ii) The speed of the electromagnetic waves is independent of the wavelength in non-dispersive medium.
 - (iii) In the electromagnetic waves, the electric and magnetic vectors oscillate perpendicularly to the direction of propagation of waves.
 - (iv) The electromagnetic waves are produced by accelerated charged particles.
- (c) The radiation zone of an oscillating dipole is
 - (i) r >> c/w
 - (ii) r >> w/c
 - (iii) $\alpha = \beta$
 - (iv) $\beta >> \alpha$

- (d) Which of the following statements is correct?
 - (i) Dimensions perpendicular to velocity of moving frame are contracted.
 - (ii) A moving clock runs fast.
 - (iii) In every closed system, the total relativistic energy and momentum are conserved.
 - (iv) All of the above
- (e) In propagation of electromagnetic waves in a conducting medium, the skin depth depends on
 - (i) frequency
 - (ii) conductivity
 - (iii) dielectric properties of conductor
 - (iv) both frequency and conductivity

(f)	In polarization for normal incidence,
	the sum of reflected coefficient and
	transmission coefficient is always equal
	torship basarea empendial in

- (i) zero
- (ii) 1
- (iii) 2
- (iv) $\pi/2$
- 2. (a) What is displacement current? Explain

 Maxwell's postulates for displacement

 current.

 1+4=5
 - (b) Discuss the propagation of plane electromagnetic wave in an isotropic dielectric medium and hence show that electric vector \overrightarrow{E} , magnetic vector \overrightarrow{H} and propagation vector \overrightarrow{K} are perpendicular to each other.

3. (a) Deduce an expression for magnetic scalar potential.

(b) Give the physical significance of Maxwell's fourth equation.

3

5

4.	Derive the expressions for electromagnetic fields of an oscillating dipole.	6
	reduced but multi Or would be leader (a)	
	Show the complete pattern of electric and magnetic lines from an oscillating electric dipole.	6
5.	(a) Explain Brewster's law on the basis of electromagnetic theory.	3
	(b) A plane electromagnetic wave is incident obliquely at the boundary of two non-conducting media. Discuss the phenomena of reflection and refraction.	4
6.	Show that the speed of electromagnetic wave in isotropic dielectric is less than the speed of electromagnetic wave in free space.	5
	Or	
	Obtain boundary conditions satisfied by electromagnetic field vector \overrightarrow{E} on the plane interface between the media.	5
7.	Discuss the phenomenon of polarization of	5

electromagnetic wave.

٠.	(4)	Explain the twin paradox phenomenon.
	(b)	What are time dilation and improper length in relativistic mechanics? 2+2=4
9.	(a)	What is relativistic energy? Prove the relation $E^2 - p^2c^2 = m_0^2c^4$.

(b) Find the relativistic mass of an electron moving with a speed of 0.8c. 2

* * *