5 SEM TDC PHY M 3

2018

(November)

PHYSICS

(Major)

Course: 503

(Atomic and Molecular Physics)

Full Marks: 60
Pass Marks: 24/18

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct option from the following:

1×6=6

- (a) The potential energy of the electron in the hydrogen atom is $-ke^2/r$. Its kinetic energy will be
 - (i) $-ke^2/r$

(ii) $-ke^2/2r$

(iii) ke2/r

(iv) $ke^2/2r$

The series limit of Balmer series for (b) hydrogen atom is given by

(i) 1/R

(ii) 4/R

(iii) 9/R

(iv) 16/R

A magneto-optical phenomenon in (c) which spectral lines are affected by an applied magnetic field and split into several components is

- (i) Stark effect
- (ii) Zeeman effect
- (iii) Compton effect
- (iv) Raman effect

A hydrogen atom is in P-state, for the (d) values of j are

- (i) 5/2, 3/2, 1/2 (ii) 3/2, 1/2
- (iii) -1/2, +1/2, +3/2 (iv) -1/2, -3/2

Every levels A, B, C of a certain atom (e) correspond to increasing values of energy, i.e., $E_A < E_B < E_C$. If λ_1 , λ_2 , λ_3 are the wavelengths of radiations corresponding to the transitions C to B, B to A and C to A respectively, which of the following statements is obeyed?

- (i) $\lambda_3 = \lambda_1 + \lambda_2$
- (ii) $\lambda_3^2 = \lambda_1^2 + \lambda_2^2$
- (iii) $\lambda_3 = \lambda_2 \lambda_1$
- (iv) $\lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$

(f)	Rydberg	constant	is
U			

- (i) same for all elements
- (ii) a universal constant
- (iii) different for different elements
- (iv) different for lighter element but same for heavier element

2. Answer any five of the following: $2 \times 5 = 10$

- (a) Discuss the origin of fine structure of H_{α} line of hydrogen atom from relativistic correction of Sommerfeld model.
- (b) Evaluate Lande's g-factor for the state 3P_1 .
- (c) What are Larmor precession and Larmor frequency?
- (d) Mention the essential elements that characterize the vector atom model.
- (e) How is He-Ne laser superior to ruby laser?
- (f) Explain the doublet structure of sodium lines.
- 3. (a) Discuss the limitations of Bohr's theory. 2
 - (b) Discuss Sommerfeld's modification of Bohr's theory. How far was the modification successful?

6

4.	Describe the different types of coupling in atom.
5.	(a) What is gyromagnetic ratio? Calculate its orbital and spin value.
	(b) Distinguish between normal and anomalous Zeeman effect. 4
6.	What is Raman effect? Discuss the characteristics of Raman lines. Indicate the importance of Raman effect. 2+2+2=6 Or
	Describe the theory and construction of ruby laser. Write down two main features of ruby laser. 4+2=6
7.	Obtain an expression for energies of various vibrational levels. Why H_2 and N_2 do not show vibrational spectra? 3+2=5
	What are the characteristic properties of a laser beam? Describe some of the important applications. 3+2=5
8.	Write short notes on (any three): 3×3=9
	(a) The postulates of Bohr's atom model for H-atom
	(b) Fine structure of spectral lines
	(c) Stark effect Distriction equipment (c)
à	(d) Selection rules