5 SEM TDC PHY M 4

2017

(November)

PHYSICS

(Major)

Course: 504 of a

(Electronics)

Full Marks: 60
Pass Marks: 24/18

Time: 3 hours

The figures in the margin indicate full marks
for the questions

1. Choose the correct answer:

1×6=6

- (a) The frequency of ripple voltage at the output of a full-wave rectifier operating from a 50 Hz supply is
 - (i) 50 Hz
 - (ii) deferential voltage H 001 (iii)
 - (iii) 150 Hz
 - (iv) None of the above (vi)

- (b) A semiconductor is formed by
 - (i) ionic bond
 - (ii) electrovalent bond
 - (iii) covalent bond
 - (iv) coordinate bond
- (c) The voltage gain of a transistor is highest in the configuration
 - (i) CB
 - (ii) CC
 - (iii) CE
 - (iv) emitter follower
- (d) The CMRR is defined as the ratio of
 - (i) differential voltage gain to current
 - (ii) current gain to differential voltage gain
 - (iii) differential voltage gain to commonmode voltage gain
 - (iv) None of the above

- The oscillator which produces non-(e) sinusoidal waveform is
 - (i) tuned collector
 - (ii) Hartley oscillator
 - (iii) relaxation oscillator
 - (iv) crystal oscillator
- The minimum number of NOR gates (f) required to design an XOR gate is
 - (i) 3
 - (ii) 4
 - (iii) 5
 - (iv) 7
- 2. Answer the following questions: 2×6=12

- A diode having forward resistance of (a) 50 Ω supplies power to a load resistance 1200Ω from a 20 V (r.m.s.) source. Calculate d.c. load current.
- (b) Explain the difference between semiconductor and conductor from band diagram.

- (c) What is thermal stabilization?
- (d) An amplifier has a voltage gain of -100. The feedback ratio is -0.04. Find the voltage gain with feedback.
- (e) State Barkhausen criterion for sustained oscillation.
- (f) Draw the logic circuit of the following Boolean equation:

$$W = (X + YZ)(Y + \overline{Z}X)$$

- 3. (a) Distinguish between Zener diode and ordinary junction diode. Explain the action of Zener diode as voltage regulator. Draw the V-I characteristics of Zener diode and explain it. 2+3+2=7
 - (b) Differentiate intrinsic and extrinsic semiconductor on the basis of energy-band diagram. Explain the mechanism of current flow under forward and reverse biased conditions. 3+4=7

Or

Draw the circuit diagram of a bridge rectifier with shunt capacitor filter and explain its operation. Derive the expression for ripple factor and efficiency without filter.

3+4=7

4. (a) Find the gain of negative feedback amplifier with block diagram. Discuss the effect of negative feedback on amplifier characteristics. 3+4=7

Or

What are class-A and class-B amplifier? Draw the circuit diagram of a push-pull class-B transistor amplifier and explain its operation. Find an expression for the maximum efficiency of the amplifier.

2+5=7

3

- (b) Explain the mechanism of current flow in a p-n-p transistor.
- 5. (a) Explain how an OP-AMP can be used as integrator.
 - (b) Draw the circuit diagram of Hartley oscillator and explain its operation. Find the expression for frequency of oscillation.

 2½+2½=5

Or

What is an IC? Explain the steps involved in fabricating a diode in an IC.

Write the limitation of IC. 1+3+1=5

- **6.** (a) Realize an OR gate using *p-n* diode and explain its operation.
- (b) Simplify the following Boolean expression:

3

Significant Hazaria $(\overline{AC} + B)(\overline{\overline{A} + \overline{C}})$

(c) Discuss the working of half adder with its logic diagram and truth table.

**

Explain the mechanism of current flow in a p-n-p-transistor.

/al Explain how an OP AMP can be used as integrator.

(b) Draw the circuit diagram of Hartley oscillator and explain its operation: Find the expression for frequency of oscillation.
25/42/485

What is an ICP Explain the steps involved in fabricating a diode in an IC. Write the limitation of IC.

2+5=7