5 SEM TDC PHY M 1

2014

(November)

PHYSICS

(Major)

Course: 501

(Mathematical Physics)

Full Marks: 60 Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct option :

1×6=6

(a) A second-order differential equation is written as

$$m\frac{d^2y}{dt^2} = -ky - l\frac{dy}{dt} \quad (l > 0)$$

The solution will be underdamped or oscillatory, if

- (i) $b^2 > \omega^2$
- (ii) $b^2 = \omega^2$
- (iii) $b^2 < \omega^2$

(b) The value of

$$\int_{-1}^{+1} x P_n \frac{dP_n}{dx} dx$$

is

- (i) 0
- (ii) $\frac{2}{2n+1}$
- (iii) $\frac{2n}{2n+1}$
- (c) The real part of an analytic function f(z) is $u(x, y) = x^2 y^2$. f(z) is equal to
 - (i) z
 - (ii) z^2
 - (iii) $|z|^2$
- (d) The sum of residues of the function

$$f(z) = \frac{e^z}{z^2 + a^2}$$

at all its poles is

- (i) $\frac{\sin a}{a}$
- (ii) $-\frac{\sin a}{a}$
- (iii) $\frac{\cos a}{a}$

(e) Which of the following identities is not correct?

(i)
$$\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}$$

(ii)
$$\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$$

(iii)
$$\frac{\pi}{4} = \frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} -$$

(f) The value of the Fourier coefficient a_0 in the Fourier series of t^2 in the interval $-\pi < t < \pi$ is

(ii)
$$\frac{\pi^2}{3}$$

(iii)
$$\frac{\pi^2}{8}$$

2. (a) The rate at which a radioactive substance decays is proportional to the remaining number of atoms. If there are N_0 atoms at t = 0, find the number at time t.

2

2

(b) Solve the initial value problem:

$$y'' - y = 0$$
, $y(0) = 4$, $y'(0) = -2$

- (c) Given $w = f(z) = z^2 + 3z$. Find u and v, and calculate the value of f at z = 1 + 3i. $\frac{1}{2} + \frac{1}{2} + 1 = 2$
- (d) Find the Maclaurin series of .

$$f(z) = \frac{1}{1+z^2}$$

- (e) What are the conditions that a function must satisfy so that the Fourier series of the function converges uniformly?
- (f) What are Fourier sine and cosine series? 2
- 3. (a) Find a general solution of

$$y'' - 3y' + 2y = e^x$$

Or

Prove that

$$(2n+1)xP_n = (n+1)P_{n+1} + nP_{n-1}$$

(b) Find the power series solution of the differential equation:

$$y'' + xy' + (x^2 + 2)y = 0$$

Or

Solve the initial value problem:

$$y'' + 2y' + 101y = 10 \cdot 4e^{x}$$
, $y(0) = 1 \cdot 1$, $y'(0) = -0.9$

2

5

(c) Set up the equation of motion for forced vibrations of a damped oscillator. Solve the equation of motion. Discuss the case of resonance and derive the form of the solution in the case of resonance.

1+2+2+2=7

4. (a) Prove that

$$P_n(x) = \frac{1}{2^n n!} \left(\frac{d}{dx}\right)^n (x^2 - 1)^n$$

(b) Prove that

$$\beta(m, n) = 2 \int_0^{\pi/2} (\sin \theta)^{2m-1} (\cos \theta)^{2n-1} d\theta$$

Find:

$$I = \int_0^\infty \frac{x^3 dx}{(1+x)^5}$$

(c) A sinusoidal voltage $E \sin \omega t$, where t is time, is passed through a half-wave rectifier that clips the negative portion of the wave. Find the Fourier series of the resulting periodic function

$$u(t) = \begin{cases} 0 & \text{if } -L < t < 0 \quad p = 2L = \frac{2\pi}{\omega}, \\ E \sin \omega t & \text{if } 0 < t < L \end{cases}$$

$$L = \frac{\pi}{\omega}$$

5

5. (a) Given

$$f(x) = \begin{cases} 0 & , & 0 < x < l \\ 1 & , & l < x < 2l \end{cases}$$

Expand f(x) in an exponential Fourier series of period 2L.

5

(b) Prove that the function $u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$ satisfies Laplace's equation and determine the corresponding regular function u + iv.

5

Or

Using Cauchy's integral formula, evaluate the integral $\oint \frac{z^2}{(z^2-1)} dz$ around

the unit circle with centre at (i) z = 1, (ii) z = -1 and (iii) $z = \frac{1}{2}$. 2+2+1=5

- (c) Find the residue of the following functions at the mentioned poles: 2+2=4
 - (i) $\frac{\cos z}{z}$ at z = 0
 - (ii) $\cot z$ at z=0
