5 SEM TDC PHY M 3

2013

(November)

PHYSICS

(Major)

Course: 503

(Atomic and Molecular Physics)

Full Marks: 60 Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct option (any five): $1\times5=5$
 - (a) Rotational spectra lie on the
 - (i) microwave region
 - (ii) infrared region
 - (iii) ultraviolet region
 - (b) In the He-Ne LASER, action occurs between two excited states of
 - (i) the He atom
 - (ii) the Ne atom
 - (iii) both the He and Ne atoms

- (c) $^2D_{5/2}$ term will split into which of the following components in magnetic field?
 - (i) 3
 - (ii) 6
 - (iii) 5
- (d) For a given set of values of n and l, the possible number of electrons in a closed shell is
 - (i) 2(2l+1)
 - (ii) 2(2l+2)
 - (iii) 2(2l-1)
- (e) The selection rule for L is $\Delta L =$
 - (i) ± 1
 - (ii) +1
 - (iii) -1
- (f) The energy of a hydrogen atom in the first exited state is
 - (i) 13.6 eV
 - (ii) -13.6 eV
 - (iii) -1·36 eV

- 2. Answer any five of the following: 2×5=10
 - (a) In what respect did classical physics fail to account for the structure of the atom?
 - (b) Discuss Bohr's correspondence principle.
 - (c) Write the importance of Raman effect.
 - (d) Mention the methods of pumping for creating population inversion. What is population inversion?
 - (e) On the basis of vector atom model, find the possible values of the total angular momentum of an f electron.
 - (f) Describe two essential features that characterise the vector atom model.
 - (g) Calculate the short and long wavelength limits of Lyman series.[Rydberg constant = 10967700 m⁻¹]
- 3. (a) Derive an expression for the gyromagnetic ratio of an electron revolving in a circular orbit.

Or

Give a brief account of Bohr-Sommerfeld model of elliptical orbit for hydrogenation.

(b) What is Raman effect? Describe the quantum explanation of Raman effect.

1+4=5

14P-1300/298

(Turn Over)

5

(a) Explain the action of He-Ne LASER.
 Distinguish between spontaneous and stimulated emission processes. 4+2=6

Or

What are Einstein *A* and *B* coefficients?

Obtain a relation between them. 1+5=6

- (b) Obtain an expression for the vibrational energy of a diatomic molecule and hence prove that vibrational energy levels are equally spaced under harmonic oscillator approach. 5+1=6
- 5. (a) What is Zeeman effect? Use classical ideas to explain Zeeman effect. Show that Zeeman shift is

$$d\lambda = \pm Be\lambda^2 / 4\pi mc$$
 1+4+2=7

Or

State two basic difference between Zeeman and Stark effects. The Zeeman components of a 500 nm spectral line are 0.0116 nm apart when the magnetic field is 1 T. Find e/m for the electron from these data.

(b) Discuss the pure rotation spectra of a heteronuclear diatomic molecule and show that the pure rotation spectrum of such a molecule consists of a series of equally spaced lines separated by a constant wave number difference 2B.

2+5=7

Explain Russell-Saunders (L-S) and (J-J) couplings of orbital and spin angular momenta. Explain D_1 and D_2 doublet of Na-spectra on the basis of electron spin.

4+3=7

- 6. Write short notes on any three of the following: 3×3=9
 - (a) Space quantization
 - (b) Larmor precession
 - (c) Lande g-factor
 - (d) Spatial and temporal coherence
 - (e) Population inversion
 - (f) Raman scattering vs. Rayleigh scattering
