5 SEM TDC PHY M 4

2013

(·November)

PHYSICS

(Major)

Course: 504

(Electronics)

Full Marks: 60 Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer as directed:

1×6=6

- (a) The peak voltage in the output of a half-wave rectifier without filter is 10 V. The d.c. component of output voltage is
 - (i) $\frac{10}{\sqrt{2}}$ V

(ii)
$$\frac{10}{\pi}$$
V

(iii) 10 V

(iv)
$$\frac{20}{\pi}$$
V

(Choose the correct answer)

(b)		unit of the ratio of mobility and sion coefficient of a semiconductor is
	(i)	V^{-1} .
	(ii)	cmV^{-1}
	(iii)	V cm ⁻¹
	(iv)	Vs
		(Choose the correct answer)
(c)	nega	voltage gain of an amplifier with 9% tive feedback is 10. The voltage gain out feedback will be
	(i)	90
	(ii)	10
	(iii)	100
	(iv)	1.25
		(Choose the correct answer)
(d)	maximum theoretical efficiency of a B push-pull transistor amplifier is	
	(i)	25%
	(ii)	50%
	(iii)	70.7%
	(iv)	78-5%

(Choose the correct answer)

(e) An oscillator using series resonant circuit with inductor L and capacitor C produces oscillations of frequency f. If L is doubled and C is changed to 4C, the frequency of oscillation will be

- (i) f/2
- (ii) f/4
- (iii) 8f
- (iv) $f/2\sqrt{2}$

(Choose the correct answer)

(f) What is the minimum number of gates required to perform the logic operation $A + \overline{AB}$?

2. Answer the following

2×6=12

- (a) Distinguish between Zener breakdown and avalanche breakdown in a p-n junction.
- (b) Find the ratio of electron to hole concentration in an *n*-type silicon crystal having donor concentration $1 \cdot 4 \times 10^{24}$ m⁻³ and intrinsic carrier concentration $1 \cdot 4 \times 10^{18}$ m⁻³.
- (c) The power gain of a C-B amplifier is 800 and the voltage amplification factor is 840. Find the collector current, when the base current is 1.2 mA.

- (d) The capacitor used in a Wien bridge oscillator is of 300 pF. What should be the value of the resistance so that the frequency of oscillation is 20 Hz?
- (e) What is negative feedback? How can it increase the stability of an amplifier?
- (f) Using Boolean algebra, prove that (A+B)(A+C) = A+BC
- 3. Distinguish between metal, semiconductor and insulator in terms of energy bands. Define Fermi level of a material and indicate its position for p-type and n-type semiconductors. Show that the Fermi level for an intrinsic semiconductor lies in the middle of the forbidden gap.
 3+2+3=8

Or

Explain the formation of potential barrier in a *p-n* junction. Derive an expression for the barrier potential. What happens to the barrier under forward and reverse biased conditions?

3+4+1=8

4. What is ripple factor? Calculate the ripple factor of a full-wave rectifier. Discuss any one method for minimizing ripple factor.

1+3+2=6

1			
5.	(a)	Explain how amplification is achieved in a transistor.	3
	(b)	What is transistor biasing? Discuss the voltage divider bias method of transistor biasing and calculate the stability factor. 1+(3+2)= Or	=6
		Draw the circuit diagram of a <i>R-C</i> coupled amplifier and give its low-frequency equivalent circuit. Calculate the gain at low-frequency range and explain why gain increases with frequency.	=6
6.	(a)	Draw the electrical equivalent circuit of a vibrating piezoelectric crystal. Find the expressions for resonant frequencies in the two modes of vibrations and show that they are approximately equal. 1+(3+1)	=5
	(b)	What is the function of silicon dioxide layer in an IC? How is it formed?	2
	(c)	Show how an OP-AMP can be used as a differentiator or an integrator.	2
7.	(a)	Draw the logic diagram of a full-adder and discuss its working by giving the truth table.	4

(b) State De Morgan's theorem and apply it to show that

$$\overline{\overline{A+B}+\overline{C}} = (A+B)C$$
 2+2=4

(c) What is a Karnaugh map? How many squares are there in a three-variable Karnaugh map? 1+1=2
