3 SEM TDC MTH M 1

2017

(November)

MATHEMATICS

(Major)

Course: 301

[Analysis—I (Real Analysis)]

Full Marks: 80

Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Differential Calculus)

(Marks: 35)

1. (a) If
$$y = \log(a + x)$$
, find y_n .

(b) If
$$y = e^{3x} \sin 4x$$
, find y_n .

2

1

(Turn Over)

(c) Evaluate

$$\lim_{x \to 0} \frac{\tan x - x}{x - \sin x}$$

3

2

4

Or

Find $\frac{ds}{dx}$ for the curve $y^2 = 4ax$.

(d) If
$$y = (\sin^{-1} x)^2$$
, then show that
$$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$$

Or

Find the radius of curvature at any point (x, y) for the curve $y = \log \sin x$.

- 2. (a) Write the geometrical interpretation of the Lagrange's mean value theorem.
 - (b) State and prove Rolle's theorem. 4
 - (c) Expand e^x in a finite series in powers of x with Lagrange form of remainder.

Or

If f'(x) = 0 for all values of x in an interval, then show that f(x) is constant in that interval.

3. (a) Find
$$\frac{\partial f}{\partial x}$$
, where $f = e^{x^2 + xy}$.

(b) If

$$u = \sin^{-1}\frac{x}{y} + \tan^{-1}\frac{y}{x}$$

then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$.

Or

If

$$u = \sin^{-1} \frac{x^2 + y^2}{x + y}$$

then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$.

- 4. (a) Define Jacobian of a function of two variables.
 - (b) Write the necessary condition for a function f(x, y) to have an extreme value at (a, b).
 - (c) If

$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2} &, (x, y) \neq (0, 0) \\ 0 &, (x, y) = (0, 0) \end{cases}$$

then show that the partial derivatives $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ exist at (0, 0).

1

4

1

1

(d) Find the maximum and minimum value of the function

$$f(x, y) = x^3 + y^3 - 3x - 12y + 20$$
 5

O

If v = v(x, y) and $x = r\cos\theta$, $y = r\sin\theta$, then find $\frac{\partial^2 v}{\partial x^2}$.

GROUP-B

(Integral Calculus)

(Marks: 20)

- 5. (a) Write the condition, when $\int_0^{2a} f(x) dx = 0$.
 - (b) Show that

$$\int_0^{\pi/2} \log \sin x \, dx = \int_0^{\pi/2} \log \cos x \, dx$$
 2

(c) Evaluate any one:

(i) $\int_0^{\pi/2} \log \tan x \, dx$

(ii)
$$\int_0^1 \frac{x^6}{\sqrt{1-x^2}} dx$$

(d) Obtain the reduction formula for

$$\int_0^{\pi/2} \sin^n x \, dx$$

4

Or

Evaluate

$$\int_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx$$

- 6. (a) Write the area of the surface of the solid obtained on revolving about x-axis, the arc of the curve y = f(x) intercepted between the points whose abscissas are a and b.
 - (b) Find the length of the arc of the parabola $y^2 = 4ax$ cut off by its latus rectum.
 - (c) Find the volume of the solid obtained by revolving one arc of the cycloid

$$x = a(\theta + \sin \theta), y = a(1 + \cos \theta)$$

Or

Find the surface generated by the revolution of an arc of the catenary

$$y = \cosh \frac{x}{c}$$

about x-axis.

2

GROUP-C

(Riemann Integral)

(Marks: 25)

7. (a)	Write the condition when the function f is Riemann integrable over $[a, b]$.	1
(b)	Choose the correct answer for the following: If $\int_a^b f(x) dx$ exists, then	. 1
	(i) f is bounded	
	(ii) f is unbounded	
	(iii) interval [a, b] is finite	
	(iv) Both (i) and (iii)	
(c)	Show that x^2 is integrable on any interval $[0, a]$.	
(d)	Prove that every continuous function is integrable.	
	Or	
	If P_1 is a refinement of a partition P , then for a bounded function f , show that $U(P_1, f) \leq U(P, f)$.	

8. (a) Prove that if a function f is continuous on [a, b], then there exists a number c in [a, b], such that

$$\int_{a}^{b} f \, dx = f(c)(b-a) \tag{4}$$

(b) If f is continuous and positive on [a, b], then show that $\int_a^b f dx$ is also positive.

Or

Explain the Riemann integrability of

$$\int_0^1 \frac{1}{\sqrt{x}} dx$$

- 9. (a) $\int_0^\infty \frac{dx}{1+x^2}$ is an improper integral. Justify why it is an improper integral.
 - (b) Write the statement of Abel's test.
 - (c) Show that

$$\int_0^\infty \sin x^2 \, dx$$

is convergent.

4

1

1

O

Test the convergence of the integral

$$\int_0^\infty \frac{\cos x}{1+x^2} dx$$

10. (a) Show that B(m, n) = B(n, m).

2

(b) Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.

2

* * *