3 SEM TDC MTH M 2

2017

(November)

MATHEMATICS

(Major)

Course: 302

(Coordinate Geometry and Algebra-I)

Full Marks: 80
Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Coordinate Geometry)

SECTION—I

(2-Dimension)

(Marks: 27)

1. (a) What will be the equation of the circle $(x-h)^2 + (y-k)^2 = r^2$, when the origin is transferred to the point (h, k)?

(b) Prove that if $ax^2 + 2hxy + by^2 = 1$ and $a'x'^2 + 2h'xy + b'y^2 = 1$ represent the same conic and the axes are rectangular, then show that

$$(a-b)^2 + 4h^2 = (a'-b')^2 + 4h'^2$$

- (c) The axes are rotated through an angle 60° without changing the origin. If the coordinates of a point are $\left(\frac{1}{2}, \frac{5\sqrt{3}}{2}\right)$ in old system, what would be its coordinates in new system?
- 2. (a) State the name of the geometrical figure represented by the equation xy = 0.
 - (b) Find the equations of the straight lines which pass through the origin and whose distance from (h, k) are equal to d.
 - (c) Prove that the lines represented by $ax^2 + 2hxy + by^2 + \lambda(x^2 + y^2) = 0$ have the same pair of bisectors for all values of λ . Interpret the case for $\lambda = -(a+b)$.

2

1

Or

If the straight lines represented by the equation

- $x^{2}(\tan^{2}\phi + \cos^{2}\phi) 2xy\tan\phi + y^{2}\sin^{2}\phi = 0$ make angles α and β with the x-axis, show that $\tan\alpha - \tan\beta = 2$.
- (d) Find the condition that one of the lines given by $ax^2 + 2hxy + by^2 = 0$ may be perpendicular to one of the lines given by $a'x^2 + 2h'xy + b'y^2 = 0$.

Or

Prove that the equation

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$

represents a pair of parallel straight lines if $\frac{a}{h} = \frac{h}{b} = \frac{g}{f}$.

- 3. (a) State True or False:

 When the focus lies on the directrix, the conic section is a pair of lines.
 - (b) Find the equation of the polar of the point (2, 3) with respect to the conic

$$x^2 + 3xy + 4y^2 - 5x + 3 = 0$$

4

(c) Find the condition that the pair of lines $Ax^2 + 2Hxy + By^2 = 0$ may be conjugate diameter of the conic

$$ax^2 + 2hxy + by^2 = 1$$

3

Or

Find the equation of the diameter of the conic $15x^2 - 20xy + 16y^2 = 1$ conjugate to the diameter y + 2x = 0.

(d) Find the equation of the chord of contact of tangents from a given point (x_1, y_1) to the conic

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$

4

Or

Reduce the equation

 $9x^2 - 24xy + 16y^2 - 18x - 101y + 19 = 0$ to the standard form

SECTION-II

(3-Dimension)

(Marks : 18)

4. (a) If O is origin and P(a, b, c), then write the direction cosines of the line OP.

(b) A plane cuts the axes at A, B, C and the centroid of the triangle is (a, b, c). Find the equation of the plane.

3

2

4

Or

Find the equation of the plane passing through the point (3, -2, 6) and through the x-axis.

- (c) Find the equations of the line passing through the point (2, 1, 0) and parallel to the line joining the points (1, 5, 2) and (3, 0, -1).
- (d) Put the equations

4x-4y-z+11=0=x+2y-z-1of a line in the symmetrical form.

Or

Find the distance of the point (-3, 1, 1)from the plane 2x+y-4z+6=0measured parallel to the line

$$\frac{x}{2} = \frac{y}{-2} = \frac{z}{1}$$

5. (a) Fill in the blank:

The shortest distance between the two lines is their common ____.

(b) Find the shortest distance between the line

ax + by + cz + d = 0 = a'x + b'y + c'z + d'and the z-axis.

3

4

(c) Show that the shortest distance between the lines x-y+z=0=2x-3y+4z and x+y+2z-3=0=2x+3y+3z-4 is $\frac{13}{\sqrt{66}}$.

Or

Find the length and the equations of the shortest distance between the lines

$$\frac{x-1}{2} = \frac{y+8}{-7} = \frac{z-4}{5}$$
 and $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-6}{-3}$

GROUP-B

(Algebra-I)

(Marks : 35)

- 6. (a) State True or False:

 Addition of natural number in binary composition is not associative.
 - (b) Define a quaternion group.
 - (c) Show that a finite semigroup in which cross-cancellation holds is an Abelian group.

(d)	Answer any two: 3×2	=
	(i) Show that a subgroup of a cyclic group is cyclic.	
	(ii) Let H , K be subgroup of G . Show that HK is a subgroup of G if and only if $HK = KH$.	
	(iii) Show that for elements a , b in a group G , the equations $ax = b$ and $ya = b$ have unique solutions for x and y in G .	
Ans	er any two: 5×2=	1
(a)	If a group has finite number of subgroups, then show that it is a finite group.	
(b)	If G be a group and $a, b \in G$, such that (i) $ab = ba$ and (ii) $(O(a), O(b)) = 1$, then show that $O(ab) = O(a)O(b)$.	
(c)	Prove that a nonempty subset H of a group G is a subgroup of G , iff—	

(a) Define a simple group. 8.

(ii) $a \in H, a^{-1} \in H.$

Prove that every quotient group of a (b) cyclic group is cyclic.

1

4

3×2=6

Or

If G is a group such that $\frac{G}{Z(G)}$ is cyclic, where

Z(G) is centre of G, then show that G is Abelian.

5

(c) Answer any two:

 $5 \times 2 = 10$

(i) Show that a subgroup H of a group G is normal in G if and only if

 $g^{-1}hg \in H \ \forall h \in H, g \in G$

(ii) If H and K be two subgroups of a group G, where H is normal in G, then prove that

$$\frac{HK}{H} \cong \frac{K}{H \cap K}$$

(iii) Find the regular permutation groups isomorphic to the multiplicative group $G = \{1, -1, i, -i\}$.

* * *