3 SEM TDC MTH M 1

2016

(November)

MATHEMATICS

(Major)

Course: 301

[Analysis—I (Real Analysis)]

Full Marks: 80

Pass Marks: 32 (Backlog)/24 (2014 onwards)

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Differential Calculus)

(Marks: 35)

1. (a) Define curvature of a curve at any point. 1

(b) If
$$y = \frac{x^3}{x^2 - 1}$$
, then prove that for $n > 1$

$$y_n = \begin{cases} 0, & \text{if } n \text{ is even} \\ -n, & \text{if } n \text{ is odd} \end{cases}$$

Or

Find:

$$\lim_{x \to a} \left(2 - \frac{x}{a} \right)^{\tan\left(\frac{\pi x}{2a}\right)}$$

- (c) Show that for the curve $by^2 = (x+a)^3$, the square of the subtangent varies as the subnormal.
- (d) For any curve $r = f(\theta)$, show that

$$ds = \left[1 + \left(r\frac{dr}{d\theta}\right)^2\right]^{1/2} dr$$

2. (a) If a quadratic function is defined on [a, b] by $f(x) = \alpha x^2 + \beta x + \gamma$, $\alpha \neq 0$, then find the real number c guaranteed by Lagrange's mean value theorem.

- (b) State Darboux's theorem.
- (c) Examine the validity of the hypothesis and conclusion of Rolle's theorem for the function

$$f(x) = (x-a)^m (x-b)^n; x \in [a, b], m, n$$

being positive integers.

3

2

3

2

(d) State the condition under which a function can be expanded as a Maclaurin's series and hence obtain series expansion of $f(x) = e^{2x}$, $x \in \mathbb{R}$.

Or

State and prove Cauchy's mean value theorem.

- 3. (a) State Euler's theorem on homogeneous functions.
 - (b) If the functions

$$\frac{\partial^2 u}{\partial y \partial x}$$
 and $\frac{\partial^2 u}{\partial x \partial y}$

both exist for a particular set of values of x, y and one of them is continuous there, then show that

$$\frac{\partial^2 u}{\partial y \partial x} = \frac{\partial^2 u}{\partial x \partial y}$$

Or

If f(x, y, z) admits of continuous partial derivatives and satisfies the relation

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} + z\frac{\partial f}{\partial z} = nf(x, y, z)$$

where n is a positive integer, then prove that f(x, y, z) is a homogenous function of degree n.

P7/76

(Turn Over)

4

1

4. (a) Define functional determinant of the functions $u_1, u_2, ..., u_n$ with respect to $x_1, x_2, ..., x_n$.

1

(b) Show that

$$\lim_{(x, y)\to(0, 0)} \tan^{-1}\left(\frac{y}{x}\right)$$

does not exist.

2

(c) Discuss the nature of extreme value of $f(x) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$ at (6, 0).

4

Or

Prove that

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}$$

is invariant for change of rectangular axes.

(d) Show that the function

$$f(x) = 2x^4 - 3x^2y + y^2$$

has neither a maximum nor a minimum at (0, 0).

GROUP-B

(Integral Calculus)

(Marks: 20)

5. (a) Under what condition

$$\int_0^{2a} \phi(x) \, dx = 2 \int_0^a \phi(x) \, dx?$$

(b) Find the reduction formula for

$$\int \cos^n x \, dx$$

(c) Evaluate:

$$\int_0^{\pi/4} (\cos 2\theta)^{3/2} \cos \theta \, d\theta$$

Or

$$\int_0^{\pi/2} \sin^6 x \, dx$$

(d) Prove that

$$\int_0^1 x^{3/2} (1-x)^{3/2} dx = \frac{3\pi}{128}$$

6. (a) The arc length of the curve y = f(x) lying between two points for which x = a and x = b (b > a) is given by ____.

(Fill in the blank)

(Turn Over)

1

1

3

(b) Find the whole length of the astroid

 $x^{2/3} + y^{2/3} = a^{2/3}$

4

(c) Find the volume of the solid generated by revolution of the loop of the curve $y^2 = x^2(a-x)$ about the X-axis.

5

Or

The part of the parabola $y^2 = 4ax$ bounded by the latus rectum revolves about the tangent at the vertex. Find the volume of the reel thus generated.

GROUP-C

(Riemann Integral)

(Marks: 25)

 (a) Condition of continuity is necessary and sufficient for Riemann integrability.

(State True or False)

(b) Find the upper and lower Riemann integrals for the function f defined on [0, 1] as follows:

 $f(x) = (1 - x^2)^{1/2}$; if x is rational and f(x) = 1 - x; if x is irrational Hence show that f is not Riemann integral on [0, 1].

3

1

(Continued)

(c) Prove that if a bounded function f, having a finite number of points of discontinuity on [a, b], then it is R-integrable on [a, b].

4

Or

Prove the necessary and sufficient condition for the integrability of a bounded function f is that to every $\varepsilon > 0$ there corresponds a partition P such that $U(P, f) - L(P, f) < \varepsilon$.

8. (a) A derivable function φ, if it exists, such that its derivative φ' is equal to a given function f is called _____.

(Fill in the blank) 1

(b) If f is bounded and integrable on [a, b], then prove that there exists a number μ , lying between the bounds of f, such that $\int_a^b f(x) dx = \mu (b-a)$.

2

(c) If $\int_a^b f(x) dx$ and $\int_a^b \phi(x) dx$ both exist and f(x) keeps the same sign throughout the interval [a, b], then prove that there exists a number c such that

 $\int_a^b f(x) \phi(x) dx = c \int_a^b f(x) dx, \ m \le c \le M$

where m and M bounds of ϕ on [a, b].

Or

Show that $\lim\{I_n\}$ where

$$I_n = \int_0^n \frac{\sin nx}{x} dx, \ n \in I$$

exists and that the limit is equal to π /2.

- 9. (a) Write the statement of Abel's test for the convergence of first and second kinds of integral of the product of two functions.
 - (b) Examine the convergence of the improper integral

$$\int_0^1 \frac{dx}{(1-x^2)^{1/2}}$$

Or

Show that

$$\int_0^\infty x^{n-1} e^{-x} dx$$

is convergent if and only if n > 0.

10. Prove that

$$\frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)} = B(p, q) = B(q, p)$$

* + +

2

4