1 SEM TDC MTMH (CBCS) C1

2019

(December)

MATHEMATICS

(Core)

Paper: C-1

(Calculus)

Full Marks: 60
Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) Write the value of $\frac{d}{dx}(\cosh x)$.
 - (b) Let f(x) is a differentiable function on an open interval I, Write when it is concave up.
 - (c) Find $\frac{d}{dx}(\tanh\sqrt{1+x^2})$.

3

Find y_n (any one):

(i) $u = \sin^2 x \cos^2 x$

(ii)
$$y = \sin x \sin 2x \sin 3x$$

(e) If $y = x^2 \tan^{-1} x$, then find y_n . 4

Or

If $y = (\sin^{-1} x)^2$, then show that
$$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$$
(f) If $y = e^{ax+b} \sin x$, then find y_n . 3

(g) Evaluate (any one): 3

(i) $\lim_{x\to 0} \frac{\tan x - x}{x - \sin x}$
(ii) $\lim_{x\to 0} \frac{x^2 + 3x}{1 - 5x^2}$
(h) Find the minimum value of the function
$$f(x) = 1 + 2\sin x + 3\cos^2 x, \ x \in \left[0, \frac{\pi}{2}\right]$$
3

2. (a) Show that
$$\int_0^{\pi} \sin^n x \, dx = \int_0^{\pi} \cos^n x \, dx$$
1
(b) Obtain the reduction formula for
$$\int \sin^n x \, dx, \ n > 1$$
and hence write the value of $\int \sin^3 x \, dx$.
$$4+1=5$$
20P/425

(Continued)

(c)	Evaluate (any one):	. 4
	(i) $\int \tan^5 x dx$	**
	(ii) $\int \sec^5 x dx$	

(d) A region bounded by the curve $y = x^2 + 1$ and the line x + y = 3 is revolved about the x-axis to generate a solid. Find the volume of the solid.

Or

A region is enclosed by the triangle with vertices (1, 0), (2, 1), (1, 1). Find the volume of the solid generated by revolving the region about the y-axis.

3. (a) Write the equation of parabola in polar form.

(b) Find an equation for the hyperbola with eccentricity $\frac{5}{3}$ and directrix x = 3 in polar form.

(c) Find the parametric equations and a parameter interval for the motion of a particle that starts at (a, 0) and traces the circle $x^2 + y^2 = a^2$, once clockwise.

(d) Determine the nature of the conic represented by

$$x^2 + 2xy + y^2 + 2x - y + 2 = 0$$
 2

5

1

2

(e) Determine the angle of rotation of axes in order to remove the xy term from

$$3x^2 - 2\sqrt{3}xy + y^2 = 1$$

(f) Find a parameterization for the line segment with end points (-1, -3) and (4, 1).

Or

Find perimeter of a circle of radius a defined parametrically by $x = a\cos t$, $y = a\sin t$, $0 \le t \le 2\pi$.

(g) Find the area enclosed by the ellipse $x = a\cos t$, $y = b\sin t$, $0 \le t \le 2\pi$.

Or

Find the area of the surface generated by revolving the curves $x = \cos t$, $y = 2 + \sin t$, $0 \le t \le 2\pi$, about x-axis.

4. (a) Let $\vec{r}(t) = (\cos t)\hat{i} + (\tan t)\hat{j} + t\hat{k}$. Find

$$\lim_{t\to\frac{\pi}{4}}\overrightarrow{r}(t)$$

2

3

3

(b) If $\vec{r}(t) = (4\cos t)\hat{i} + (4\sin t)\hat{j} + (\cos^2 t)\hat{k}$ be the position vector of a particle at any time t, then find velocity at any time t.

- (c) Let $\vec{r}(t)$ is a differentiable vector function of t of constant length. Show that $\vec{r}(t)$ and $\vec{r}'(t)$ are orthogonal.
- 2

3

(d) Evaluate

$$\int_0^{\pi} [(\cos t)\hat{i} + 2t\hat{j} + 3t^2\hat{k}]dt$$

Or

Find the scalar triple product of the vectors $\hat{i} + 2\hat{j} + 3\hat{k}$, $\hat{i} + 3\hat{j} + 5\hat{k}$ and $\hat{i} + \hat{j} + 6\hat{k}$.

(e) Write the value of $\vec{a} \times (\vec{b} \times \vec{c})$.