1 SEM TDC MTMH (CBCS) C 2

2019

(December)

MATHEMATICS

(Core)

Paper: C-2

(Algebra)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) State the complex number -1+i in the polar form.
 - (b) Show that the n numbers of n th root of unity form a geometric progression indicating the common ratio.
 - (c) Find the values of $(-16)^{\frac{1}{4}}$.
 - (d) Writing $\cos\theta + i\sin\theta$ as $\operatorname{cis}\theta$, if $x = \operatorname{cis}\alpha$, $y = \operatorname{cis}\beta$, $z = \operatorname{cis}\gamma$ and xyz = x + y + z, show that

$$1 + \cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta) = 0$$

1

2.	(a)	Give an example of the well-ordering property of positive integers.	1
	(b)	Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be two functions. Consider the composite of f and g . Following conclusions are drawn:	
		I. fg is the composite of f and g .	
		II. Range of f is contained in the domain of g .	
		Choose the correct answer from the following:	1
		(i) Both the statements I and II are true	
		(ii) I is true and II is false	
		(iii) I is false and II is true	
		(iv) Both the statements I and II are false	
	(c)	Consider the functions $f: \mathbb{Z} \to \mathbb{R}$ defined as $f(x) = 2x$ and $g: \mathbb{N} \to \mathbb{R}$ defined as $g(x) = \sqrt{x}$. Find the composites gf	
		and fg, if they exist. Justify your answer in each case.	
			2
	(1)	Show that the relation 'congruence	

modulo m' (\equiv) over the set of positive integers is an equivalence relation.

- (e) Let $f: X \to Y$ be invertible. Show that f is a bijection. Show that $g: \mathbb{R} \to \mathbb{R}$ defined by g(x) = 2x + 1 is a bijection and find its inverse. 3+2+1=6
- (f) Let b>0 be an integer and a be any integer. Show that there exist unique integers q and r such that a=bq+r, where $0 \le r < b$.
- (g) What is Euclidean algorithm? Let $a, b \in \mathbb{Z}$ and either $a \neq 0$ or $b \neq 0$. Show that there exists greatest common divisor d of a and b such that d = ax + by for some integers x and y and d is uniquely determined by a and b. 1+5=6

Or

Show that $an \equiv bn \pmod{m} \Leftrightarrow a \equiv b \pmod{\frac{m}{d}}$, where (m, n) = d.

- 3. (a) Define linear combination of the vectors v_1, \dots, v_p in \mathbb{R}^n .
 - (b) Give an example of a 3×5 matrix in the row reduced echelon form.
 - (c) A linear system of equations in five variables has been reduced to the

1

associated system

 $x_1 + 6x_2 + 3x_4 = 0$; $x_3 - 4x_4 = 5$; $x_5 = 7$ with reference to the reduced augmented matrix

$$\begin{bmatrix} 1 & 6 & 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & -4 & 0 & 5 \\ 0 & 0 & 0 & 0 & 1 & 7 \end{bmatrix}$$

Indicate the basic variables and the free variables.

(d) A vector equation $x_1v_1 + \cdots + x_pv_p = 0$ where each $v_i \in \mathbb{R}^n$; $1 \le i \le p$ and each x_i ; $1 \le i \le p$ is a scalar, has the trivial solution. State the consequences with reference to x_i 's and v_i 's separately.

1+1=2

2

(e) Define span $\{v_1, \dots, v_p\}$, where $v_1, \dots, v_p \in \mathbb{R}^n$. Justify whether $0 \in \text{span } \{v_1, \dots, v_p\}$ or not. Determine, for what value(s) of h, $w = \begin{bmatrix} 3 \\ 1 \\ h \end{bmatrix}$ is in

span $\{v_1, v_2, v_3\}$, where $v_1 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$,

$$v_2 = \begin{bmatrix} 5 \\ -4 \\ -7 \end{bmatrix}, \ v_3 = \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}.$$

Or

Let A be an $m \times n$ matrix, $x \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$. When does the equation Ax = b have a solution? Further for $u, v \in \mathbb{R}^n$ and a scalar c show that—

- (i) A(u+v) = Au + Av;
- (ii) A(cu) = c A u.
- (f) Describe all the solution of Ax = b, where

$$A = \begin{bmatrix} 3 & 5 & -4 \\ -3 & -2 & 4 \\ 6 & 1 & -8 \end{bmatrix}, b = \begin{bmatrix} 7 \\ -1 \\ 4 \end{bmatrix}$$

by-

- (i) row reducing the augmented matrix [A b] to echelon form;
- (ii) transforming the above to row reduced echelon form;
- (iii) giving the solution in the form x = p + tv, $t \in \mathbb{R}$. 2+2+1=5
- (g) Prove that an indexed set of two or more vectors $S = \{v_1, \dots, v_p\}$ is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.

Or

Determine a linear dependence relation among the vectors $v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $v_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$,

$$v_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}.$$

- **4.** (a) Let $T: \mathbb{R}^{5} \to \mathbb{R}^{2}$ and T(x) = Ax for some matrix A and for each $x \in \mathbb{R}^{5}$. How many rows and columns are there in A?
 - (b) Define the column space of a matrix A. 1
 - (c) Show that the null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n .
 - (d) Show that $u = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$ is an eigenvector of $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$ and state the corresponding eigenvalue.
 - (e) Determine the eigenvalues of $A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$.

1

(f) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be linear. Then show that T is one-to-one if and only if the equation T(x) = 0 has the trivial solution.

4

(g) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be linear. Show that there exists a unique matrix A such that $T(x) = Ax \ \forall \ x \in \mathbb{R}^n$.

4

Or

Let $T: \mathbb{R}^2 \to \mathbb{R}^4$ be linear and given

$$T(e_1) = \begin{bmatrix} 3\\1\\3\\1 \end{bmatrix}, \quad T(e_2) = \begin{bmatrix} -5\\2\\0\\0 \end{bmatrix}, \quad \text{where} \quad e_1 = \begin{bmatrix} 1\\0 \end{bmatrix}$$

and $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Find a formula for the image of an arbitrary x in \mathbb{R}^2 .

(h) Row reduce the augmented matrix $[A \ I]$, where $A = \begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{bmatrix}$ and I, the

identify matrix so that $[A \ I]$ is row equivalent to $[I \ A^{-1}]$. Verify that $AA^{-1} = I$. 3+2=5

(i) Determine the rank of

$$A = \begin{bmatrix} 2 & 5 & -3 & -4 & 8 \\ 4 & 7 & -4 & -3 & 9 \\ 6 & 9 & -5 & 2 & 4 \\ 0 & -9 & 6 & 5 & -6 \end{bmatrix}$$

by row reducing it to echelon form.

4

**