1 SEM TDC MTH M 1

2013

(November)

MATHEMATICS

(Major)

Course: 101

(Classical Algebra, Trigonometry and Vector Calculus)

Full Marks: 80 Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Classical Algebra)

1. (a) Choose the correct answer for the following:

A sequence is bounded if and only if

- (i) its domain is bounded
- (ii) its range is bounded
- (iii) it is bounded above
- (iv) it is bounded below

(Turn Over)

1

14P-2000/148

- (b) Write the bounds of the sequence $\{S_n\}$, where $S_n = 1 + (-1)^n$, $n \in \mathbb{N}$.
- (c) Show that the sequence $\{S_n\}$, where

$$S_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$

is a bounded sequence.

(d) Show that a sequence converges to one limit point only.

Or

Show that every bounded sequence with a unique limit point is convergent.

- 2. (a) Write when an infinite series diverges.
 - (b) Write the statement of Leibnitz test for convergence of an alternating series.
 - (c) Test the convergence of the infinite series $\sum \frac{1}{n}$.
 - (d) Test the convergence of the infinite series $1 + \frac{2^2}{2!} + \frac{3^2}{3!} + \frac{4^2}{4!} + \cdots$
 - (e) Show that if a series ΣU_n of positive monotonic decreasing terms converges, then $nU_n \to 0$ as $n \to \infty$.

Or

Test the convergence of the infinite series $1 + \frac{3}{4} + \frac{9}{16} + \frac{27}{64} + \cdots$.

2

2

5

1

4

4

4

3. (a) If α be a root of an equation f(x) = 0, then write a factor of f(x).

1

(b) If $-\sqrt{3}$ and $-(1+i\sqrt{6})$ are two roots of the equation $x^4 + 2x^3 + 4x^2 - 6x - 21 = 0$, then write the other two roots of the equation.

1

(c) Write the nature of the roots of the equation $x^3 - 5x^2 - 4x + 20 = 0$.

2

(d) If -1, -1, -4 are the roots of the equation $x^3 + 6x^2 + 9x + 4 = 0$, then write the equation whose roots are -2, -2, -8.

2

(e) If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, then find the value of

 $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}$

(f) Solve the equation $x^3 - 21x - 344 = 0$ by Cardan's method.

6

Or

If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, then find the value of $\alpha^4 + \beta^4 + \gamma^4$.

GROUP-B

(Trigonometry)

4. (a) Choose the correct answer:

1

 $(\cos x + i \sin x)^{\frac{3}{4}}$ is equal to

- (i) $\cos\frac{4}{3}x + i\sin\frac{3}{4}x$
- (ii) $\cos\frac{3}{4}x i\sin\frac{3}{4}x$
 - (iii) $\cos\frac{3}{4}x + i\sin\frac{4}{3}x$
 - (iv) $\cos\frac{3}{4}x + i\sin\frac{3}{4}x$
- (b) Write the roots of the quadratic equation $x^2 2x\cos\theta + 1 = 0$.

2

(c) Express $\cos 5\theta$ in powers of $\cos \theta$.

5

Or

If $x = \cos \theta + i \sin \theta$ and $1 + \sqrt{1 - a^2} = na$, prove that $1 + a \cos \theta = \frac{a}{2n} (1 + nx)(1 + \frac{n}{x})$.

5. (a) Show that
$$\log i = (2n + \frac{1}{2})\pi i$$
.

2

3

(b) Show that

$$\log(1 + \cos 2\theta + i\sin 2\theta) = \log(2\cos\theta) + i\theta.$$

Or

Express cos(x+iy) in the form A+iB.

6. (a) Write the interval of x for which $\tan^{-1} x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \dots +$

$$(-1)^{n-1} \frac{x^{2n-1}}{2n-1} + \cdots$$

(b) Show that

$$\frac{\pi}{4} = \left(\frac{2}{3} + \frac{1}{7}\right) - \frac{1}{3}\left(\frac{2}{3^3} + \frac{1}{7^3}\right) + \frac{1}{5}\left(\frac{2}{3^5} + \frac{1}{7^5}\right) - \dots$$

Or

Expand $\log \cos x$ in ascending powers of $\tan x$, $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$.

7. (a) Choose the correct answer: 1
sin(ix) is equal to

- (i) isin hx
- (ii) sin hx
- (iii) isin hx
- (iv) icoshx

(Turn Over)

14P-2000/148

(b) Write the period of tan hx.

1

(c) Write the expansion of cos hx in terms of x.

2

(d) Find the sum of $\cos\theta\cos2\theta + \cos3\theta\cos4\theta + \cos5\theta\cos6\theta + \cdots$ up to n terms.

4

Or

Separate tan h(x+iy) into real and imaginary parts.

GROUP-C

(Vector Calculus)

8. (a) Choose the correct answer:

1

A vector \overrightarrow{V} is a solenoidal vector of

(i) $\nabla \times \vec{V} = 0$

(ii) $\nabla \cdot \vec{V} = 0$

. .

- (iii) $\nabla |\vec{V}| = 0$
- (iv) $\nabla \cdot \overrightarrow{V} = \text{non-zero constant}$
- (b) Find curl \vec{A} , where $\vec{A} = x\hat{i} + z\hat{j} + 2y\hat{k}$.

2

(c) Show that $\nabla \times (\phi \vec{A}) = (\nabla \phi) \times \vec{A} + \phi(\nabla \times \vec{A})$, where ϕ is a scalar function and \vec{A} is a vector function.

7-

Show that $\nabla f(r) = \frac{f'(r)}{r} \vec{r}$, where $r = |\vec{r}|$, $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$.

- (d) Show that $\nabla \phi$ is a vector perpendicular to the surface $\phi(x, y, z) = c$, where c is a constant.
- (e) Evaluate $\nabla \cdot (r^3 \vec{r})$, $r = |\vec{r}|, \vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$. 4

Or

Find the directional derivative of $\phi = 4xz^2 - 3xyz$ at (1,-1, 1) in the direction of $2\hat{i} - 3\hat{j} + 6\hat{k}$.

5

3