1 SEM TDC MTH M 1

1

1

2015

(November)

MATHEMATICS

(Major)

Course: 101

(Classical Algebra, Trigonometry and Vector Calculus)

Full Marks: 80

Pass Marks: 32 (Backlog) / 24 (2014 onwards)

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP---A

(Classical Algebra)

- 1. (a) Write the domain of all sequences.
 - (b) Choose the correct answer for the following:

A sequence $\{f_n\}$ is said to be bounded below if there exists a real number ksuch that—

(i)
$$f_n \ge k$$
, $n \in \mathbb{N}$ (ii) $f_n \le k$, $n \in \mathbb{N}$ (iii) $f_n = k$, $n \in \mathbb{N}$ (iv) $\frac{1}{f_n} \ge k$, $n \in \mathbb{N}$

P16-4000/14 (Turn Over)

- (c) Write the conditions under which a sequence diverges to ∞ and -∞.
 (d) Show that {f_n}, where f_n = (-1)ⁿ/n is a Cauchy sequence.
 (e) Show that the set of all limit points of a bounded sequence is bounded.
 Or
 Show that every bounded sequence with a unique limit point is convergent.
- 2. (a) Write the condition under which the infinite series Σu_n diverges.
 - (b) If the series $\sum_{n=1}^{\infty} u_n$ converges, then write the value of $\lim_{n\to\infty} u_n$.
 - (c) Test for the convergence of the series $\sum_{n=1}^{\infty} \cos \frac{1}{n^2}$
 - (d) Write the statement of Raabe's test. 2
 - (e) Show that the infinite series $\sum \frac{1}{n^2 + a^2}$ is convergent.

1

1

2

Or

Test the convergence of the series

$$\sum \frac{n!}{n^n}$$

- (f) State Cauchy's condition of convergence for an infinite series and using this principle, test the convergence of the series $\sum \frac{1}{n}$.
- 3. (a) Write the transformed equation of $8x^3 9x^2 + 1 = 0$ to solve by Cardan's method.
 - (b) Choose the correct answer for the following:

Every equation of odd degree

- (i) has no real root
- (ii) has at least two real roots
 - (iii) has only complex roots
 - (iv) has at least one real root
- (c) Write the nature of the roots of the equation $x^3 + px + q = 0$, if p and q are positive.

(d) If 2+3i is a root of the equation $x^3-6x^2+21x-26=0$, then find the value of the real root.

2

(e) Solve the following by Cardan's method:

$$x^3 - 6x - 9 = 0$$

Or

Find the equation whose roots are the squares of the roots of the equation $2x^3 - 3x^2 + 4x - 5 = 0$.

(f) Find the sum of the fourth powers of the roots of $x^3 - x - 1 = 0$.

ጉ--

If α , β , γ are the roots of the equation $x^3 + qx + r = 0$, then find the equation whose roots are $\alpha - \frac{1}{\beta \gamma}$, $\beta - \frac{1}{\alpha \gamma}$, $\gamma - \frac{1}{\alpha \beta}$.

(g) If α , β , γ are the roots of the equation $6x^3 - 11x^2 - 3x + 2 = 0$ and are in harmonic progression, then find the value of $\gamma\alpha$.

2

GROUP-B

(Trigonometry)

4. (a) Write the value of

$$\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}$$

- (b) Expand $\sin^2 x$ in powers of x. 2
- (c) If n is odd, then write the last term in the expansion of $\sin n\theta$.
- (d) If α and β are the roots of the equation $x^2 2x + 4 = 0$, then find the value of $\alpha^n + \beta^n$.

Or

Prove that $\cos 5\theta = \cos^5 \theta - 10\cos^3 \theta \sin^2 \theta + 5\cos \theta \sin^4 \theta$

- 5. (a) If z is a complex number, then write the period of e^z .
 - (b) Prove that $\tan^{-1}(e^{i\theta}) = \frac{\pi}{4} + \frac{1}{2}i\log\tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right)$ 4

Prove that

$$\sin(\log i^i) = -1$$

- 6. (a) If x is complex and $\tan^{-1} x = x \frac{1}{3}x^3 + \frac{1}{5}x^5 ...$, then write the interval in which the real part of $\tan^{-1} x$ lies.
- 1

3

(b) Evaluate the value of

$$\frac{2}{3} + \frac{1}{7} - \frac{1}{3} \left(\frac{2}{3^3} + \frac{1}{7^3} \right) + \frac{1}{5} \left(\frac{2}{3^5} + \frac{1}{7^5} \right) - \dots$$

Or

Expand $\tan^{-1} \left(\frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} \right)$ as a power series in $\tan \theta$.

7. (a) Show that $\operatorname{sech}^2 x = 1 - \tanh^2 x$.

- 2
- (b) Separate into real and imaginary parts of $\sin(\alpha + i\beta)$.
- 2

4

(c) Find the sum of the series

$$\sin \alpha + n \sin (\alpha + \beta) + \frac{n(n-1)}{2!} \sin(\alpha + 2\beta) + \dots$$
 to

(n+1) terms

.

Find the sum of the series

$$\cos\theta + \sin\theta + \frac{\cos^2\theta \sin 2\theta}{2!} + \frac{\cos^3\theta \sin 3\theta}{3!} + \dots$$

GROUP-C

(Vector Calculus)

8. (a) If
$$\vec{r} = (x^2y^2 - x^3)\hat{i} + e^{xy}\hat{j} + x^2\sin y\hat{k}$$
, then find $\frac{\partial \vec{r}}{\partial x}$.

(b) Show that $\vec{v} = z\hat{i} + x\hat{j} + y\hat{k}$ is a solenoidal vector.

(c) Find $\nabla \phi$, at (1, -2, 2), where $\phi = x^2 z - y^2 z + x^3 y$

(d) Find
$$\nabla \left(\frac{1}{r}\right)$$
, where
$$r = |\vec{r}|, \ \vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$
 2

(e) Show that div curl
$$\overrightarrow{A} = 0$$
.

On Evaluate $\nabla \cdot (r^n \vec{r})$.

(f) Show that

$$\nabla \cdot (\overrightarrow{A} \times \overrightarrow{B}) = \overrightarrow{B} \cdot (\nabla \times \overrightarrow{A}) - \overrightarrow{A} \cdot (\nabla \times \overrightarrow{B})$$

Or

Find the directional derivative of $\phi = 4xz^3 - 3x^2y^2z$ at (2, -1, 2) in a direction towards a point (2, -3, 6).

 $\star\star\star$