2019

(May)

CHEMISTRY

(Major)

Course: 201

(Physical, Inorganic, Organic)

(New Course)

Full Marks: 80

Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

Write the answers to the separate Sections in separate books

SECTION-I

(Physical Chemistry)

(Marks : 26)

1. Choose the correct answer from the following:

1×3=3

- (a) The extensive property of the system is
 - (i) temperature
 - (ii) volume
 - (iii) refractive index
 - (iv) viscosity

	(b)	b) For the reaction $2NH_3(g) \rightarrow N_2(g) + 3H_2(g)$, the correct statement is					
		(i) $\Delta H = \Delta E$					
		(ii) $\Delta H > \Delta E$					
		(iii) $\Delta H < \Delta E$					
		(iv) $\Delta H = 0$					
	(c)	The concentration of sodium acetate solution that should be added to $0.1 M$ solution of CH_3COOH to produce a solution of $pH 5.5$ is (pK_a) of $CH_3COOH = 4.5$)					
		(i) 0·1 M					
		(ii) 0·2 M					
		(iii) 1·0 M					
		(iν) 10·0 M					
		Unit—I					
Answe	er an	ny two questions from the following: 6×2=	12				
		Differentiate between state function and path function with one example	1				
of each.							
(b) Thermodynamically show that for one mole of an ideal gas $C_P - C_V = R$.							
	(c)	Calculate the difference between the heat of reaction at constant pressure and the heat of reaction at constant volume for the following reaction at a constant temperature					
		$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$	2				
3.	(a)	Show that for a van der Waals gas, Joule-Thomson coefficient (μ_{JT}) is given by					
		$\mu_{\rm JT} = \frac{1}{C_P} \left[\frac{2a}{RT} - b \right]$	4				
	(b)	Prove that Joule-Thomson effect is isoenthalpic in nature.	2				
4.	(a)	How are the temperature and volume related to each other during the adiabatic expansion of an ideal gas? Deduce the relation.	4				
	(b)	Deduce Kirchhoff's equation.	2				
P9/56	2	2					

				•			
Answer	any	two	questions	from	the	following	:

51/2×2=11

- 5. (a) For acidic and basic buffers, derive the expressions relating the pH of the buffer solutions with the concentrations of the components. 2+2=4
 - (b) Write any three applications of buffer solutions.

11/2

- 6. (a) Define solubility product. Explain why ZnS is precipitated in alkaline medium whereas CuS is precipitated in acidic medium. 1+2½=3½
 - (b) Establish the relationship between solubility and solubility product of a sparingly soluble salt.
- 7. (a) Prove that pH + pOH = 14.

11/2

2

- (b) A sulphuric acid solution has pH = 2. Calculate the molarity of the acid solution.
 - 2

2

(c) A saturated solution of Ag_2SO_4 has solubility 2.5×10^{-2} M. Find its solubility product.

W

SECTION-II

(Inorganic Chemistry)

(Marks : 27)

8. Choose the correct answer from the following:

 $1 \times 3 = 3$

- (a) The number of six-membered rings in C₆₀ is
 - (i) 12
 - (ii) 20
 - (iii) 16
 - (iv) 18

	(b)	Pern	nutit is				
		(i)	a ceramic				
		(ii)	a constituent of cement				
		(iii)	an artificial zeolite				
		(iv)	a kind of fullerene				
	(c)	Belo	w which temperature CO is a better reducing agent than C?				
		(i)	473 K				
		(ii)	673 K				
		(iii)	373 K				
		(iv)	273 K				
			Unit—I				
9.	Ans	swer a	any three questions from the following:	3×3=9			
	(a)	Why are noble gas compounds common in xenon? Explain the structure					
		of XeF ₄ .					
	(b)	What are silicones? How can they be prepared? What is silicon rubber?					
				1+1+1=3			
	(c)	What are phosphazenes? How is $(NPCl_2)_n$ polymer prepared? Draw					
	structure of (NPCl ₂) ₃ .		cture of (NPCl ₂) ₃ .	1+1+1=3			
	(d)	Classify the following by structural type :					
		(i)	B ₈ H ₁₆				
		(ii)	$B_2H_7^{2-}$				
		(iii)	$C_2B_9H_{12}^-$				
	(e)	Comp	plete the following reactions :	1×3=3			
	N.F.	(i)	$AgNO_3 + HN_3 \longrightarrow ?$				
		(ii)	$CuO + NH_2OH \xrightarrow{\text{alkaline}} ?$				
		(iii)	$AuCl_3 + N_2H_4 \longrightarrow ?$				

10. Write short notes on the following (any two):

 $2 \times 2 = 4$

- (a) Fullerene (C₆₀)
- (b) S4N4
- (c) Carborane

UNIT-II

11. How will you obtain the following (any two)?

3×2=6

- (a) Manganese from pyrolusite ore
- (b) Cobalt from smaltite ore
- (c) Vanadium from vanadinite ore

12. Write a short note on the following (any one):

2

- (a) Hydrometallurgy
- (b) Solvent extraction

13. Give the preparation of the following (any two):

11/2×2=3

- (a) Sodium cobaltinitrite
- (b) Lead chromate
- (c) Ammonium molybdate

SECTION-III

(Organic Chemistry)

(Marks : 27)

14. Choose the correct answer from the following:

 $1 \times 3 = 3$

(a) The reagents used for the following conversions

are

- (i) alc. KOH and $\rm H_2O/HgSO_4/H_2SO_4$
- (ii) alc. KOH and KMnO₄ /H⁺
- (iii) NaNH2 and H2O/HgSO4/H2SO4
- (iv) NaNH2 and KMnO4/H+

(b) Consider the following reaction

CH₃ CH₃
Br + CH₃OH
$$\stackrel{\text{E1}}{\longrightarrow}$$
?

Which of the following is not formed?

(c) The major product obtained on monobromination $(Br_2/FeBr_3)$ of the following compound (A)

is

(ii)
$$CH_3$$
 CH_3

15. Answer any six questions from the following:

2×6=12

- (a) Give evidences to show that bromination of cis- and trans-stilbene is stereoselective.
- (b) What is the role of Hg⁺² ion in nucleophilic addition reaction of alkynes?

2

2

- (c) What happens, when-
 - (i) propyne is treated with B_2H_6 in THF followed by alkaline hydrolysis with H_2O_2 /OH⁻;
 - (ii) cyclopentadiene is treated with methyl acrylate (dienophile) at 80 °C?
- (d) Discuss the regioselectivity of the E2 elimination with a suitable example. 2
- (e) Using Corey-House synthesis, how can you prepare 2-methylbutane?
- (f) Complete the following reaction and discuss the mechanism involved: 2
- (g) How will you prepare cis-pentene-2 and trans-pentene-2 starting from ethyne?
- (h) Synthesize styrene from benzaldehyde using Peterson reaction.
- **16.** Answer any *two* questions from the following : $2 \times 2 = 4$
 - (a) Synthesize a cycloalkane using the following synthetic route:

EtO

OEt
$$\frac{1) \text{ KH/THF}}{2) \text{ H}_3\text{O}^+}$$
 (A) Hydrolysis

Decarboxylation

a cycloalkanone ----- a cycloalkane .

- (b) Draw perspective and Newman projection for the chair-conformation of cyclohexane. 1+1=2
- (c) Explain 1,3-diaxial interaction in the chair-conformation of methyl-cyclohexane.

2

- (d) Discuss the conformational analysis of *n*-butane with the help of Newman projection formula.
 - 2

2

- (e) What is Sachse-Mohr theory of strainless rings? Explain with suitable examples.
- 17. Answer any four questions from the following:

- 2×4=8
- (a) Account for the aromatic behaviour of cycloheptatrienyl cation and anthracene.
- (b) Complete the following reaction and suggest the mechanism:

$$\frac{\text{NO}_2}{\text{conc. HNO}_3 + \text{conc. H}_2\text{SO}_4} \Rightarrow ?$$

(c) How would you prepare styrene from benzene?

2

2

- (d) Explain why chlorine in chlorobenzene is O/P directing although it has +I effect during electrophilic substitution in benzene.
 - 2

(e) Complete the following reaction:

1+1=2

Toluene
$$\xrightarrow{\text{H}_2\text{SO}_4}$$
 \Rightarrow A $\xrightarrow{\text{1) Fuming HNO}_3/\text{r.t.}}$ \Rightarrow B (Disulphonation)

(Old Course)

Full Marks: 80

Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

Write the answers to the separate Sections in separate books

SECTION-I

(Physical Chemistry)

(Marks: 26)

1. Choose the correct answer from the following:

 $1 \times 3 = 3$

- (a) The extensive property of the system is
 - (i) temperature
 - (ii) volume
 - (iii) refractive index
 - (iv) viscosity
- (b) For the reaction $2NH_3(g) \rightarrow N_2(g) + 3H_2(g)$, the correct statement is
 - (i) $\Delta H = \Delta E$
 - (ii) $\Delta H > \Delta E$
 - (iii) $\Delta H < \Delta E$
 - (iv) $\Delta H = 0$
- (c) According to second law of thermodynamics, a process is spontaneous, if during the process
 - (i) $\Delta S_{\text{universe}} > 0$
 - (ii) $\Delta S_{\text{universe}} = 0$
 - (iii) $\Delta H_{\text{system}} > 0$
 - (iv) $\Delta S_{\text{universe}} = \Delta S_{\text{system}}$

4

2

2

2

2

2

11/2

31/2

2

- 2. (a) How are the temperature and volume related to each other during the adiabatic expansion of an ideal gas? Deduce the relation.
 - (b) Calculate the work done by the system when 2 moles of an ideal gas expand from 0.01 m^3 to 0.1 m^3 at 300 K isothermally and reversibly.
- 3. (a) What is Joule-Thomson effect? Show that this effect is isoenthalpic in nature.
 - (b) Derive a relationship between Joule-Thomson coefficient and thermodynamic quantities.
- 4. (a) Deduce Kirchhoff's equation.
 - (b) State and explain Hess's law with one suitable example.
 - (c) The heat of formation of methane at 27 °C is -19.3 kcal when the measurements are made at constant temperature. What will be the heat of formation at constant volume?

UNIT-II

Answer any two questions from the following:

- 51/2×2=11
- 5. (a) Deduce an expression for efficiency of a Carnot engine working between two temperatures T_1 and T_2 .
 - (b) An engine operates between 100 °C and 0 °C. Find the efficiency of the engine.
- 6. (a) Derive an expression for entropy increase during isothermal mixing of two ideal gases.
 - (b) Mention two factors upon which the entropy of a system depends.

- 7. (a) State and explain Nernst's heat theorem. Write one consequence of the theorem. 2+1=3
 - (c) Predict whether at 27 °C the following reaction is spontaneous or not: 1½

 $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(l)$

Given, $\Delta H = 10.5 \times 10^3 \text{ Jmol}^{-1}$, $\Delta S = 31 \text{ JK}^{-1} \text{ mol}^{-1}$

(c) Write the physical significance of Gibbs' free energy.

1

SECTION-II

(Inorganic Chemistry)

(Marks : 27)

8. Choose the correct answer from the following:

1×3=3

- (a) ZSM-5 converts methanol to
 - (i) methanal
 - (ii) CH₃CHO
 - (iii) CO₂
 - (iv) gasoline
- (b) In XeO3, xenon is
 - (i) sp³-hybridized
 - (ii) dsp^3 -hybridized
 - (iii) dsp²-hybridized
 - (iv) d^2sp^3 -hybridized
- (c) In Goldschmidt aluminothermic process, Al-powder acts as
 - (i) oxidizing agent
 - (ii) reducing agent
 - (iii) flux
 - (iv) None of the above

UNIT-I

9.	Ans	swer any three questions from the following:	3×3=9
	(a)	Explain the formation of $3c-2e$ bond in boranes.	3
	(b)	Give the structure of the following:	1+2=3
		(i) Ortho-silicates (ii) Cyclic silicates	
	(c)	How will you prepare XeO ₃ ? Discuss its structure.	1+2=3
	(d)	What are zeolites? Mention its uses.	3
	(e)	Give the method of preparation and structure of phosphazene.	1+2=3
10	Wri	te short notes on the following (any two):	
10.			2×2=4
	(a)	Hydrazine	
	(b)	Silicones	
	(c)	Fullerene (C ₆₀)	
		UNIT—II	
11.	Des	cribe the extraction of any two of the following:	3×2=6
	(a)	Molybdenum from molybdenite ore	
	(b)	Vanadium from vanadinite ore	
	(c)	Cobalt from smaltite ore	
12.	Wri	te a short note on the following (any one):	3
	(a)	Zone refining	
	(b)	Electrorefining metals	

13. Complete the following reactions (any two):

1×2=2

- (a) $Na_2Cr_2O_7 + 2NH_4Cl \xrightarrow{\Delta}$?
- (b) $CoCl_2 + KNO_2 + CH_3COOH \longrightarrow ?$
- (c) $V_2O_5 + Na_2CO_3 \xrightarrow{\Delta} ?$

SECTION-III

(Organic Chemistry)

(Marks: 27)

14. Choose the correct answer from the following:

1×3=3

(a) Which compound undergoes reaction with HNO₃ +H₂SO₄ at faster rate than benzene?

- (b) In \longrightarrow + Br₂ \longrightarrow X, product X is
 - (i) (+)-1,2-dibromobutane
 - (ii) (±)-1,2-dibromobutane
 - (iii) meso-1,2-dibromobutane
 - (iv) (-)-1,2-dibromobutane

(c)
$$Cl$$
 $CH_3 + KOH (alc) \longrightarrow X$

The product X in the above reaction is

15. Answer any six questions from the following:

2×6=12

- (a) Arrange the following compounds in increasing boiling point:

 Pentane; 2-methylbutane; 2,2-dimethylbutane; Butane
- (b) Complete the following reactions:

(i)
$$\underbrace{\frac{1) O_3}{2) \operatorname{Zn, H_2O}}} ?$$

(ii)
$$HCl \rightarrow ?$$

- (c) Using hydroboration-oxidation reaction prepare butanol-1.
- (d) Using Corey-House synthesis, prepare an unsymmetrical alkane.
- (e) How will you convert the following?

(f) Predict aromaticity in the following:

(g) Phenol is more reactive than benzene when reacted with CH₃Cl+AlCl₃. Explain.

P9/562

(h) Complete the following reactions:

(i)
$$CH_3 + Cl_2 \xrightarrow{UV} ?$$

(i)
$$CH_3 + Cl_2 \xrightarrow{UV} ?$$

16. Answer any two questions from the following:

 $3 \times 2 = 6$

- Discuss the conformation analysis of ethane.
- Draw the conformers of bromocyclohexane and explain their stability.
- Write a short note on Bayer's strain theory.

17. Answer any two questions from the following:

3×2=6

(a) Identify the products from the following:

(i)
$$CH_3$$
 Cl_2 $FeCl_3$?

(ii)
$$OCH_3 \longrightarrow POCH_3$$
 $OCH_3 \longrightarrow POCH_3$

(iii)
$$CH_3-C \equiv CH \xrightarrow{H_2SO_4 \text{ (dil)}}$$
 ?

- Cl is deactivating but o-p directing. Explain.
- Write a short note on E1cB reaction.

* * *