And the second

2017

(May)

CHEMISTRY

(Major)

Course: 201

(Physical, Inorganic, Organic) State of the state of the

(New Course)

Full Marks: 80

Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions Write the answers to the separate Sections in separate books and the state of the second section is a second section.

SECTION—I

(Physical Chemistry)

(Marks : 26)

range in the company of the company

1. Choose the correct answer from the following:

 $1 \times 3 = 3$

- (a) Two moles of an ideal gas is expanded isothermally and reversibly from 1 litre to 10 litre at 300 K. The enthalpy change (in kJ) for the process is
 - (i) 11.4

1618 Philip 20

(ii) -11·4

(iii) 0 (iv) 4.8

- (b) If one mole of ammonia gas and one mole of hydrogen chloride gas are mixed in a closed container to form ammonium chloride vapour, then
 - (i) $\Delta H < \Delta E$

(ii) There is no relationship

(iii) $\Delta H > \Delta E$

- (iv) $\Delta H = \Delta E$
- (c) The solubility product $(K_{\rm sp})$ of ferric hydroxide in aqueous solution is 3.8×10^{-38} at 298 K. The solubility of Fe³⁺ ions will increase, when
 - (i) pH is increased
 - (ii) pH is 7
 - (iii) pH is decreased
 - (iv) saturated solution is exposed to atmosphere

Unit—I

A STATE OF THE STATE OF

Answer any two of the following:

6×2=12

2. (a) How are the temperature and volume related to each other during the adiabatic expansion of an ideal gas? Deduce the relation.

The second of the second of the second of the second

(b) An ideal gas $(\overline{C}_P = 29.1 \text{ JK}^{-1} \text{ mol}^{-1})$ is expanded reversibly and adiabatically from a volume of 1.43 dm^3 at a pressure of 303975 Pa and temperature 298 K until the volume is 2.86 dm^3 . Calculate the final temperature of the gas.

- 3. (a) What is Joule-Thomson effect? Prove that this effect is isoenthalpic in nature.
 - (b) Thermodynamically show that for an ideal gas, $C_P C_V = R$.

3

2

4.	(a)	Dedu	ice Kirchh	off's equa	tion.	12385					4
				7 }	Chemistr	ganle	oal)				
	(b)	Expl	ain, giving	reasons,	the follow	ing (ar	ny two):			2×2	=4
		(i)	For reacti	ons invol	ving conde	ensed j	ohases, Δ	$H = \Delta E$.	mo p	6. Fin	
Ex		(ii)	Enthalpy	of neutra	dization of	a stro	ng monol	pasic acid by	y a st	rong	
		120	hace is a	mane eur	al to -57.	32 k.I t	mol^{-1}	ved moltesibe			
	PAT	(iii)	The Hess'	law of co	nstant hear ermodynan	t sumn	nation is a	direct cons	equen	ce of	
			pyramidal	square				octahedral	(1)		
		lahimu	nal bipyra	pentag			lobimary	qid lamgiri	(113)		
			lo entities	luciani ec	Unit-	eH su	been at 2	eolite ZSM-	The s	191	
			6	o-xylen	(h) Costs			toluene			
5.	An	swer	any two of	the follo	wing:			p-xylene	(MA)	5½×2	=11
	(a)	(i)	Derive ar	expressions and v	ion for the veak acid.	pH of	an aqueo	us solution		alt of	3
		(ii)	Calculate (pK _a of a	the pH acetic aci	of 0·1 <i>M</i> d is 4·8)	aqueo	us soluti	on of sodiu	m ac	etate.	1½
		(iii)						reases with			
			temperat	ure. of U	o tellerate	elemet	bylisogo	righty electr	(03)		1
	(b)	(i)	Derive thacidic an	e express d basic b	sions relati uffers) with	ing the	pH of by	affer solution on of the con	ns (for	both	
2.3	E (0)		endum du			1 30	ne followi	y three of th	er as	WanA .	-2=4
		(ii)	40 ml of What is t	0·1 <i>M</i> am he pH of	i <mark>monia s</mark> oli the mixtur	ution i e? (pK	s mixed v	vith 20 ml of onia solution	0.1 1	M HCl. (4)	1½
						19 240	7			3	
	(c)	(i)	What is alkaline	solubilit medium	y producti whereas C	Expl CdS is	ain why precipitat	CoS is pre	cipita med	ted in ium.	
		U OUI	air from a	nedille o	ter What a		erbust ar	Il you pres	W WOI	1	+2=3
	10)	(ii)	Define i	nic prod	uct of wat	er. Sh	ow that p	$bK_{W} = pH + p$	OH.	1+11/	½=2½

SECTION—II.

(Inorganic Chemistry)

(Marks: 27)

б.	Find	out	the	correct	answer	from	the	following
								TOTOWITIE

1×3=3

- (a) Hybridization involved in the formation of XeOF₄ molecule is sp^3d^2 . The shape of the molecule is
 - (i) octahedral

- (ii) square pyramidal
- (iii) trigonal bipyramidal
- (iv) pentagonal bipyramidal
- (b) The zeolite ZSM-5 is used as catalyst in the manufacture of
 - (i) toluene

(ii) o-xylene

(iii) p-xylene

- (iv) m-xylene
- (c) The electrolytic reduction method is used in extraction of
 - (i) metalloid
 - (ii) transition metals
 - (iii) highly electronegative elements
 - (iv) highly electropositive elements

Unit—I

7. Answer any three of the following:

De Company

3×3=9

- (a) How are silicates classified? Give one example of each class.
- (b) What are closo-, nido- and arachno-boranes? Give example of each.
- (c) How will you prepare hydrazoic acid? What are azides? Mention two uses of it.

	(d)	Explain the preparation and structure of Borazine.
	(-)	Describe the properties and uses of tetrapilehan tetrapitride (S. N.)
	(e)	Describe the preparation and uses of tetrasulphur tetranitride (S ₄ N ₄).
8.	Wri	te short notes on (any two): 2×2=4
-S×I		12. Choose the correct answer from the following:
	(a)	Fullerenes
	7.	Which of the following hydrocarous has the lowest dipole memor
	(b)	Hydroxylamine
	(c)	Silicones
	14	the me endences to show that become allow in hemail buscus and risk
		Complete the foliating reac UNIT—II
9.	Wri	te short note on (any one):
	(-)	(b) The linal product (B) formed in the sequence of the reactions
	(a)	Solvent extraction
	(b)	Hydrometallurgy
	(-)	
10.	Giv	e the preparations of the following (any two): 1½×2=3
	(a)	Cobalt nitrate
	(h)	Ammonium molybdate
	(0)	Animonium molybuate
	(c)	Potassium dichromate
	1-7	
		news and the inflations.
11.	Hov	w will you obtain the following (any two)?
	ON THE	2-200 compound with moterning tourists Carlo, which will give only
	(a)	Manganese from pyrolusite ore commenced and analysis of the standard and t
		Cobalt from smaltite ore
	(b)	Cobait nom smanne ore
	(c)	Vanadium from vanadinite ore
	(9)	the state of the s

(Organic Chemistry)

(Marks : 27)

12. Choose the correct answer from the following:

1×3=3

(a) Which of the following hydrocarbons has the lowest dipole moment?

(ii) CH₃—C=C—CH₃

- (iv) CH₂=CH—C≡C—H
- (b) The final product (B) formed in the sequence of the reactions

$$\frac{\text{Hg(OAc)}_2}{\text{THF-H}_2\text{O}} \to (A) \xrightarrow{\text{NaBH}_4} (B)$$

is

(ii) OH the preparation (iii)

- (iv)
- (c) The compound with molecular formula C₈H₁₀, which will give only two isomers on electrophilic substitution with Cl₂/FeCl₃ or HNO₃/H₂SO₄, is
 - (i) p-xylene

(ii) m-xylene

(iii) o-xylene

(iv) ethyl benzene

13. Answer any six of the following:

- (a) An alkane (A) C7H16 is produced by the reaction of lithium di(3-pentyl) cuprate with ethylbromide. What is the structure of (A)?
- Synthesize 2-methylpropene from 2-methyl-propanol-1 by using Chugaev reaction.

15. Answer any four of the jollowing some

- What is the best stereospecific conformation for E2 elimination? Explain with a suitable example. undergo electronis le amendie
- (d) Give the evidences to show that bromination of trans-2 butene and cis-2 butene is stereoselective.
- Complete the following reactions:

$$CH_3$$
— CH_2 — $C=CH \xrightarrow{1) NaNH_2} (A) \xrightarrow{H_2/Pd-BaSO_4} (B)$

Predict the most stable alkene formed in the following Hofmann (f) (we the meanantern of niti elimination:

$$C_{2}H_{5}$$
 $C_{3}H_{7}$
 $C_{3}H_{7}$
 $C_{3}H_{7}$
 $C_{4}H_{5}$
 $C_{4}H_{5}$
 $C_{5}H_{7}$
 $C_{5}H_{7}$
 $C_{5}H_{7}$
 $C_{5}H_{7}$
 $C_{5}H_{7}$
 $C_{5}H_{7}$
 $C_{5}H_{7}$

- (g) Explain that hydroboration reaction is regioselective.
- (h) What product do you expect from the reaction between phenylacetylene and dil H2SO4 in the presence of Hg+2 ion?

14. Answer any two of the following:

 $2 \times 2 = 4$

- (a) Synthesize cyclopentane from a suitable dinitrile using Thorpe-Ziegler reaction.
- (b) Discuss the conformational analysis of n-butane and draw the energy profile diagram.

- (c) Why is the chair conformation free of angle strain?
 - (d) Draw the Newmann projection formula for axial and equatorial methyl cyclohexane.

15. Answer any four of the following:

to sept the grown as a control of the grown and

2×4=8

(a) Arrange the following compounds in order of increasing tendency to undergo electrophilic aromatic substitution reaction with proper explanation:

Nitrobenzene, Benzene and Toluene

- (b) Define Hückel's rule of aromaticity. Mention whether the following are aromatic or not:
 - (i) Cyclopentadienyl anion
 - (ii) Phenanthrene
- (c) Give the mechanism of nitration of toluene.

the state of the s

- (d) How will you explain the directive influence of —CH=CH₂ group, when attached to the benzene ring?
- (e) Predict the major product in the following reaction:

udicharcally from a vi-

Theresodynamically above

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

Write the answers to the separate Sections in separate books

SECTION—I

(Physical Chemistry)

(Marks : 26)

*8					.tro.		4. (a) Induce Kirchhoffe ec	
1. (Cho	ose ti	he correct	answer from the	he followin	g:	1×3=	
		1 litr	e to 10 litre	at 300 K. The	enthalpy c	hang	ermally and reversibly from ge (in kJ) for the process is	
yo	1013	(i)	11.4	donom grans -	to -57-32	(ii)	Land Landship of new	
10	200	(iii)	direct coo	e at notisminu	inni best s	(iv)	4-8vef saelf edt (til)	
	(b)	If on	e mole of a	ammonia gas a	and one me	ole o	of hydrogen chloride gas are nium chloride vapour, then	
		(i)	$\Delta H < \Delta E$		I-TIUU	(ii)	There is no relationship	
		(iii)	$\Delta H > \Delta E$			(iv)	$\Delta H = \Delta E$	
	(c)	The -2.5	enthalpy <10 ³ cal ar	and entropy nd 7·4 cal deg	changes 1 respectiv	for ely.	a chemical reaction are The reaction at 298 K is	
0.00	it s	(i)	spontaneo	ed at baylour		(ii)	reversible	
		(iii)	irreversibl	e _{s cros} ass la	abl as lo	(iv)	non-spontaneous	

UNIT-I

Answer any two of the following:

6×2=12

2. (a) How are the temperature and volume related to each other during the adiabatic expansion of an ideal gas? Deduce the relation.

	(b)	An	ideal gas $(C_P = 29.1 \text{ JK}^{-1} \text{ mol}^{-1})$ is expanded reversibly and							
		tem	batically from a volume of 1.43 dm ³ at a pressure of 303975 Pa and perature 298 K until the volume is 2.86 dm ³ . Calculate the final							
			perature of the gas.	2						
3.	(a)	Wha natu	What is Joule-Thomson effect? Prove that this effect is isoenthalpic in 1+2=3							
	(b)	Ther	rmodynamically show that for an ideal gas $C_P - C_V = R$.	3						
		Ded	uce Kirchhoff's equation.	2						
Exi	(b)	Exp	lain, giving reasons, the following (any two):	=4						
1	mon.	(i)	For reactions involving condensed phases, $\Delta H = \Delta E$.							
,		(ii)	Enthalpy of neutralization of a strong monobasic acid by a strong base is always equal to -57.32 kJ mol ⁻¹ .							
	715 9	(iii)	The Hess' law of constant heat summation is a direct consequence of the first law of thermodynamics.							
	thork		mixes in a closed contained to form ammonium chloride vapo							
	gii	ieno	Dalor on all and the Unit—II							
5.	Ans	wer :	any two of the following:							
	NO.	noiga i na	and the designation of the second sec	11						
	(a)	(i)	Deduce an expression for entropy changes associated with the changes in temperature and pressure of an ideal gas.	4						
		(ii)	Calculate the entropy change involved in the isothermal reversible expansion of 5 moles of an ideal gas from a volume of $10 \mathrm{dm}^3$ to $100 \mathrm{dm}^3$ at $300 \mathrm{K}$.							
				1/2						
e \$78	(b)	(i)	Deduce an expression for efficiency of a Carnot engine working between two temperatures T_1 and T_2 .	4						
4	vi) a	(ii)	Liquid helium boils at 4 K and liquid hydrogen boils at 20 K. What is	•						
				1/2						

3		(c)	(i) State and explain the third law of verified experimentally?	ther	modynamics. How can it b	e 2+2=4
5-1			(ii) Write the physical significance of	Gibb	s' free energy.	11/2
		*	5	- 20	(0.014) + 0.014 + 0.014 = 0.	ti .
			SECTION—II		f_1 NH ₃ +HNO ₂ \rightarrow ?	
	10		(Inorganic Chemi	23.50	(ai) CH3COCH3 FNH	
			(Marks : 27)			
pour 5	6.	Cho	pose the correct answer from the following	ng:	Write about notes on (up)	1×3=3
		(a)	Permutit is		(b) Zedhicked Potential	
			(i) a ceramic	(ii)	a constituent of cement	
			(iii) an artificial zeolite	(iv)	a kind of fullerene	
		(b)	In XeF ₂ , xenon is			
		(~)	(i) sp ³ d hybridized	(ii)	sp ³ d ² hybridized	
			(iii) sp ³ d ³ hybridized		dsp ² hybridized	
	50.5	(c)	The first step in the extraction of meta	ls fr	om the carbonate ore is	
			(i) roasting	(ii)	calcination	
			(iii) smelting	(iv)	carbon reduction	
				Mis	(fe) Vanadiom from	
			The passes are line to say to see a see a second	Logariti.	the manufacture of	
	2×S		Unit—I	200.000	a Zene rebrine	
	7.	Ans	swer any three of the following:		Hij Solvent danscom	3×3=9
		(a)	What are closo-, nido- and arachno-box	anes	37 Give example of each.	3
		(b)	Discuss the structure of XeF ₄ . What hap temperature (-80 °C)?	pen	s when it is hydrolyzed at l	ow 2+1=3
		(c)	How are silicates classified? Draw the pyrosilicates and chain silicates.	e str	uctures of primary units	in 1+2=3

(d) What are silicones? How can they be prepared? What is silicone rubber? 3 (e) Complete the following reactions: $NH_2 - NH_2 + 2H_2O_2 \rightarrow ?$ (ii) $NH_3 + HNO_2 \rightarrow ?$ (iii) CH₃COCH₃ +NH₂OH → ? 8. Write short notes on (any two): house the correct answer from the following (a) Inorganic benzene (a) Permuut is (b) Zeolite (c) Hydroxylamine UNIT-II 9. (a) How will you obtain the following (any two)? Manganese from pyrolusite (i) Cobalt from smaltite ore (ii) Vanadium from vanadinite ore (iii) (b) Write short notes on (any two): 2×2=4 Zone refining (i) Solvent extraction (ü) to) What are close, niclos and arachno-born Electrolytic reduction

Carbon monoxide gas is passed over nickel powder at 50 °C

(c) What happens when the following is done (any one)?

Chromic oxide is heated with aluminium powder

(iii)

SECTION—III soo year at Justing in Section

(Organic Chemistry)

(Marks : 27)

10. Choose the correct answer from the following:

- (a) Out of the following, the alkene that exhibits optical isomerism is
 - (i) 3-methyl-2-pentene
- (ii) 2-methyl-1-pentene
- (iii) 3-methyl-1-pentene

- (iv) 2-methyl-2-pentene
- What is the product formed when acetylene reacts with hypochlorous

- (c) Presence of a nitro group in a benzene ring
 - renders the ring basic (i)
 - deactivates the ring towards nucleophilic substitution (ii)

What is Witigon gent? Synthesize styrene from a suitable aldehyde by

- (iii) deactivates the ring towards electrophilic substitution
- activates the ring towards electrophilic substitution
- 11. Answer any six of the following: 2×6=12

- (a) How do you account for acidic nature of alkynes as compared to alkenes? Give two reactions in which acetylene behaves as an acid.
- (b) Synthesize propene from acetaldehyde using Peterson reaction.

(c) Rearrangement is very common in El as in S_N1. Predict the product obtained in the following elimination reaction:

$$CH_3$$
 CH_3 H^+ ?

- (d) What stereochemical products are obtained when hydroxylation via epoxidation is carried out with cis- and trans-stilbene?
- (e) An unsaturated hydrocarbon (A) adds two molecules of H₂ and on reductive ozonolysis gives butane-1,4 dial, ethanal and propanone. Give the structure (A) and explain the reactions involved.
- (f) Explain why—
- (i) R—C=C—R gives a ketone on hydrolysis;
 - (ii) electrophilic addition of Br₂ to an alkene involves bridged bromonium ion.
- (g) How would you prepare a phosphorous ylide from Ph₃P? Synthesize styrene from a suitable aldehyde by using the ylide.
- (h) What is Wittig reagent? Synthesize styrene from a suitable aldehyde by using Wittig reagent.
- 12. Answer any three of the following:

2×3=6

- (a) Explain Baeyer strain theory. Why is it not applicable to cyclohexane?
- (b) Synthesize cyclohexane from esters of pimelic acid (Dieckmann reaction).
- (c) Draw the Newmann projection of chair- and boat-conformation of cyclohexane.
- (d) Draw different conformations of methyl cyclohexane. Assign their stabilities in an energy profile.
- (e) Convert cyclohexanone into cyclopentanone.

13. Answer any three of the following:

2×3=6

- (a) What is aromaticity? Account for the aromatic behaviour of-
 - (i) cyclopropenyl cation;
 - (ii) 1,3-cyclopentadienyl anion.
- (b) Suggest methods for the following conversions:

(i)
$$\sim$$
 CH₂-CH₃ \rightarrow \sim

(ii)
$$\longrightarrow$$
 CH₃— \bigcirc C₃H₇

- (c) The —NH₂ group attached to a benzene ring is o-/p-directing, while —NO₂ group is meta-directing. Explain, why.
- (d) Complete the following reaction and write its mechanism:

$$+ CH_3-CH_2-CH_2-CI \xrightarrow{\text{Anhy. AlCl}_3/HCl}$$
?

(e) Complete the following reactions:

(i)
$$CH_3 \xrightarrow{\text{CH}_3} Alk. \text{ KMnO}_4 \rightarrow (A) \xrightarrow{\Delta} (B)$$

(ii)
$$\frac{1) B_2 H_6 \text{ in THF}}{2) H_2 O_2 / OH^-} ?$$

* * *