3 SEM TDC CHM M 1 (N/O) 2019 (November) CHEMISTRY (Major) Course: 301 ### (Inorganic Chemistry-I) (New Course) Full Marks: 48 Pass Marks: 14 Time: 2 hours The figures in the margin indicate full marks for the questions 1. Select the correct answer: 1×5=5 - (a) The spectroscopic free ion ground term for d^2 configuration is - (i) 1S - (ii) ³ P - (iii) 2D - (iv) 3F - (b) The complex ion which obeys the EAN rule is - (i) [Fe(CN)₆]³⁻ - (ii) [Cr(NH₃)₆]³⁺ - (iii) [Fe(CN)6]4- - (iv) [Pt(NH3)4]2+ - (c) The CFSE for the d^3 -ion in strong crystal field is - (i) 4 Dq - (ii) 8 Dq - (iii) 12 Dq - (iv) 16 Dq - (d) Which of the following is not a member of actinoids? - (i) Nobelium - (ii) Uranium - (iii) Californium - (iv) Europium - (e) Which of the following is least labile? - (i) [Ba(H₂O)₆]²⁺ - (ii) [Mg(H2O)6]2+ - (iii) [Sr(H2O)6]2+ - (iv) [Ca(H2O)6]2+ - 2. Answer any five of the following questions: 3×5=15 - (a) Give IUPAC names of the following: 1×3=3 - (i) [Co(NH₃)₆] [CuCl₄] (ii) $$\left[(NH_3)_4 Cr < \frac{NH_2}{NO_2} > Fe(H_2O)_4 \right] Cl_4$$ - (iii) [Cr(PPh3)(Co)5] - (b) Write down the formulae of the following complexes: 1×3=3 - (i) Tetrahydroxonickelate(II) - (ii) Ammonium tetrathiocyanato- 5 chromate(II) - (iii) μ-amidodecamminedicobalt (III) - (c) Write down the conditions required to determine the ground term of a configuration. Find out the free ion ground term for d^7 configuration. 2+1=3 - (d) What is EAN? Find the EAN for $[Co_4(Co)_{12}]$. Write down the limitations of EAN rule (any two). 1+1+1=3 - (e) What is Irving-William series? Discuss briefly. 1+2=3 - (f) Give reasons of the following: 1½×2=3 (i) Ti⁴⁺ ion is more stable than Ti³⁺ ion. - (ii) D-block elements show variable oxidation state. ### 3. Answer the following questions: - (a) What is CFSE in octahedral complexes? Calculate CFSE for the following: 1+1+1=3 (i) [FeF₆]³⁻ ion (ii) [Fe(CN)₆]³⁻ ion - (b) Explain the Orgel diagram of a metal complex with d^9 configuration. - (c) Draw the splitting and energy level diagrams of metal d-orbitals in octahedral, tetragonal and square planar complexes. Why is crystal field splitting Δ_{sp} greater than Δ_0 ? 3+1=4 3 | 4. | (a) | Explain the mechanism of the reaction in terms of S_N 1-CB mechanism: | 5 | |----|-----|---|---| | | [Co | $(NH_3)_5Cl]^{2+} + OH^{\Theta} \rightarrow [Co(NH_3)_5OH]^{2+} + Cl^{\Theta}$ |) | | | (b) | Give an account of 'trans-effect'. | 2 | | 5. | (a) | Discuss the stereoisomerism exhibited by the complex [Cr(gly) ₃]. | 2 | | | (b) | Define macrocylic ligands. Give the meaning of the numbers 18 and 6 in the complex [Na(18-crown-6)] ⁺ . | 2 | | | (c) | A solution containing $2.674 \mathrm{g}$ of $\mathrm{CoCl}_3 \cdot 6 \mathrm{NH}_3$ was passed through a cation exchanger. The solution obtained gave $4.305 \mathrm{g}$ of AgCl precipitate with AgNO ₃ solution. Determine the formula of the complex. (Given, molar masses of $\mathrm{CoCl}_3 \cdot 6 \mathrm{NH}_3 = 267.4$ | | | | | and AgCl = 143 · 45) | 4 | | 6. | Ans | wer any <i>one</i> question : | 3 | | | (a) | Explain the fact that the most common oxidation state of the three elements La (57), Gd (64) and Ln (71) is +3. | | | | (b) | What are the consequences of | | ### (Old Course) Full Marks: 48 Pass Marks: 19 Time: 3 hours The figures in the margin indicate full marks for the questions 1. Select the correct answer: $1 \times 5 = 5$ - (a) Which of the following complexes obeys EAN rule? - (i) [Fe(CN)₆]³⁻ - (ii) [Co(CN)₆]⁴⁻ - (iii) [Fe(CN)6]4- - (iv) [Ni(NH3)6]2+ - (b) The high-spin configuration of Cr(II) ion is octahedral. Crystal field is - (i) $t_{2g}^4 e_g^0$ - (ii) $t_{2g}^{3}e_{g}^{1}$ - (iii) $t_{2g}^3 e_g^2$ - (iv) $t_{2g}^4 e_g^1$ | (c) | The spectroscopic free ion ground term | |-----|--| | | for d ¹ configuration is | - (i) ⁵D - (ii) 4 F - (iii) 2D - (iv) 3 F (d) Which of the following has the minimum trans-effect? - (i) NO2 - (ii) C2H4 - (iii) Br - (iv) NH3 (e) Common oxidation state of lanthanides is - (i) +2 - (ii) +3 - (iii) +4 - (iv) None of the above 2. Answer any five of the following questions: $2 \times 5 = 10$ - (a) What is ambidentate ligand? Give an example. - (b) What are the L and S values of ³F, ¹D, ³P and ²G? - (c) What are inert and labile complexes? - (d) Draw the structures of all possible stereo-isomers of [Co(en)₂Cl₂]⁺. - (e) Give the electronic configurations of europium and neodymium. - (f) What do you mean by diamagnetism and paramagnetism? - (g) Write down the chemical formulae of the following compounds: - (i) Chloronitro bis(ethylenediamine) cobalt(III) ion - (ii) Decaamine-μ-hydroxodichromium(III) bromide # 3. Answer any three of the following questions: $3 \times 3 = 9$ (a) Write the IUPAC names of the following compounds: (i) [Pt(NH₃)₄][PtCl₄] (ii) LiAlH4 (iii) [(NH₃)₅Co—NH₂—Co(NH₃)₅]Cl₅ - (b) What is chelation? Why are chelate complexes highly stable? - (c) On the basis of crystal field theory, explain that [CoF₆]³⁻ is paramagnetic but [Co(NH₃)₆]³⁺ is diamagnetic. - (d) Draw and explain Orgel diagram of a metal complex with d^1 configuration. - (e) On the basis of valence bond theory, discuss the structures of [Ni(CO)₄] and [Ni(CN)₄]²⁻. ## 4. Answer any three of the following questions: 4×3=12 (a) Discuss briefly the splitting and energy level diagrams of metal d-orbitals in octahedral and tetrahedral complexes. Why is crystal field splitting Δ_t less than Δ_o ? 3+1=4 - (b) Calculate the number of unpaired electrons (n), spin only magnetic moments (μ_s) and CFSE in terms of Δ_o for the complex $[Cr(H_2O)_6]^{2+}$. $1+(1\frac{1}{2}\times 2)=4$ - (c) Write short notes on the following: 2×2=4(i) Colour of complexes in the light of crystal field theory - (ii) Nephelauxetic effect - (d) What is spectro-chemical series? Write the spectro-chemical series of the common ligands. Calculate CFSE for an octahedral complex with d⁷ metal ion under strong and weak field conditions. - 5. Answer any *three* of the following questions: $3\times 3=9$ - (a) Explain the associative and dissociative mechanisms in ligand substitution reaction. - (b) Discuss the kinetics of acid hydrolysis of Co(III) compounds with suitable example. - (c) What is trans-effect? Starting from [PtCl₄]²⁻ and other ligands, outline the synthesis of cis- and trans-[PtCl₂(NH₃)(NO₂)]. 1+2=3 4 (d) Discuss inert and labile complexes with examples. Which one of the following is more labile? 1½×2=3 $[Mg(H_2O)_6]^{2+}$ and $[Al(H_2O)_6]^{3+}$ #### 6. Answer either (a) or (b): 3 - (a) Give three points of differences between lanthanides and actinides. - (b) What do you mean by lanthanide contraction? What are the causes of lanthanide contraction? **