3 SEM TDC CHM M 1 (N/O)

2018

(November)

CHEMISTRY

(Major)

Course: 301

(Inorganic Chemistry-I)

(New Course)

Full Marks: 48
Pass Marks: 14

Time: 2 hours

The figures in the margin indicate full marks for the questions

1. Select the correct answer:

 $1 \times 5 = 5$

- (a) The complex ion which does not obey EAN rule is
 - (i) [Pt(NH₃)₆]⁴⁺
 - (ii) $[Fe(CN)_6]^{3-}$
 - (iii) [Co(NH₃)₆]³⁺
 - (iv) [Cu(CN)4]3-

- (b) In the complex $[Ti(H_2O)_6]^{3+}$, the metal ion has
 - (i) d1-configuration
 - (ii) d2-configuration
 - (iii) d3-configuration
 - (iv) d5-configuration
- (c) The free ion ground term for Ni²⁺ ion is
 - (i) 4 F
 - (ii) 2D
 - (iii) ³ F
 - (iv) 3D
- (d) Which of the following has the highest lability?
 - (i) SF₆
 - (ii) [PF₆]
 - (iii) $[SiF_6]^{2-}$
 - (iv) [AIF₆]³⁻

- (e) The number of 4f-electron in lanthanum is
 - (i) 0
 - (ii) 1
 - (iii) 2
 - (iv) 5
- 2. Answer the following questions: 2×8=16
 - (a) What is spectrochemical series? Write one application of the spectrochemical series. 1+1=2
 - (b) Find out the values of L and S for 3_P , 1_D , 3_F and 2_G . $\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2$
 - (c) Write the name and formula of each of the following types of ligand: 1×2=2
 - (i) A bidentate ligand with one acidic and one neutral donor
 - (ii) A tridentate ligand with three neutral donors
 - (d) Write the IUPAC names of the following compounds: 1+1=2
 - (i) Na₃[Co(CN)₅NO]
 - (ii) $[(NH_3)_5Co-NH_2-Co(NH_3)_5]Cl_3$

(e)	complexes: 1+1=2
	(i) Dichloro-bis-(triphenyl phosphine) palladium (II)
	(ii) Pentaamine (dinitrogen) ruthenium (II) chloride
Ø	$[Fe(H_2O)_6]^{2+}$ is labile but $[Fe(CN)_6]^{4-}$ is inert. Explain.
(g)	Explain inert and labile complexes with examples.
(h)	What are the problems in the separation of lanthanides from one another?
3. Ans	swer any three questions: 3×3=9
(a)	What do you mean by crystal field stabilization energy (CFSE)? Calculate CFSE for each of the following octahedral systems:
	(i) d ⁵ -high spin
	(ii) d^6 -low spin 1+2=3
P9/227	(Continued)

- (b) Discuss the geometrical isomerism of $[Ma_2X_2]^{n\pm}$ and $[MA_4X_2]^{n\pm}$ type complexes. $1\frac{1}{2}+1\frac{1}{2}=3$
- (c) Ni(CO)₄ is tetrahedral while $[Ni(CN)_4]^{2-}$ ion is square planar. Explain in the light of valence bond theory. $1\frac{1}{2}+1\frac{1}{2}=3$
- (d) Draw and explain the Orgel diagram for a d¹-system.
- (e) What are inner complexes? Give the characteristics of inner complexes. 1+2=3
- (a) Write a note on acid hydrolysis of cobalt (III) compounds with suitable example.
 - (b) Explain the mechanisms of reactions in the following: 2+2=4

(i)
$$[L_5MX] \xrightarrow{\text{slow}} X + [L_5M]$$

$$\downarrow^{+ Y \text{ fast}}$$

$$[L_5MY]$$

(ii)
$$[L_5MX] \xrightarrow{\text{slow}} \left[L_5M \underset{Y}{\swarrow} X \right]$$

$$\downarrow^{\text{fast}}$$
 $[L_5MY] + X$

5.	(a)	State and explain the following	with
		suitable examples :	2+2=4

- (i) Laporte selection rule
- (ii) Spin selection rule
- (b) The complex ion $[Co(NH_3)_6]^{3+}$ is octahedral and diamagnetic and $[CoF_6]^{3-}$ is also octahedral but paramagnetic. How does valence bond theory account for this observation?

2+2=4

6. Answer either (a) or (b):

3

- (a) What do you understand by lanthanide contraction? Discuss its causes. 1+2=3
- (b) Give reasons of the following:
 - (i) Ti^{4+} ion is more stable than Ti^{3+} ion.

11/2

(ii) d-block elements show variable oxidation state.

11/2

(Old Course)

Full Marks: 48
Pass Marks: 19

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Select the correct answer:

 $1 \times 5 = 5$

- (a) The complex ion which obeys the EAN rule is
 - (i) $[Cr(NH_3)_6]^{3+}$
 - (ii) $[Pt(NH_3)_4]^{2+}$
 - (iii) [Fe(CN)₆]³⁻
 - (iv) [Fe(CN)6]4-
- (b) The CFSE for the d^3 -ion in strong crystal field is
 - (i) 4 Dq
 - (ii) 8 Dq
 - (iii) 12 Dq
 - (iv) 16 Dq

- (c) The spectrocopic free ion ground term for d^1 is
 - (i) 2D
 - (ii) 5 D
 - (iii) 3 P
 - (iv) 1 S
- (d) The complex which reacts most rapidly is
 - (i) [Co(CN)₆]³⁻
 - (ii) [Ni (CN)4]2-
 - (iii) [Cr(CN)₆]³⁻
 - (iv) [Mn(CN)6]4-
- (e) Which of the following elements has the electronic configuration $[Xe]4f^65d^16s^2$?
 - (i) Americium
 - (ii) Californium
 - (iii) Europium
 - (iv) Fermium

2.	Ar	nswer the following questions: 2×8	=1
	(a,	Write the IUPAC names of the following compounds:	1=
		(i) [Co(ONO)(NH ₃) ₅] SO ₄	
		(ii) K ₃ [Fe(CN) ₅ NO]	
	(b)	Write the formulas of the following: 1+	1=2
		(i) Dichloro-bis-(triphenyl phosphine) palladium (II)	
		(ii) Potassium pentachloronitrito- osmate (VI)	
	(c)	What is spectrochemical series? Write the spectrochemical series of the common ligands.	=2
	(d)	Ni(CO) ₄ and [Ni(CN) ₄] ²⁻ have different	
		geometries but same magnetic property. Explain. 1+1	=2
	(e)	Draw the structures of all the possible	
		isomers of [Co(en) ₃] ³⁺ ion.	2
	(f)	Explain briefly S _N 1- and S _N 2- mechanisms for ligand replacement	
		reactions.	2
((g)	Write a note on trans-effect.	2
(h)	Discuss the causes of lanthanide contraction.	
			2

(Turn Over)

P9/227

Calculate the CFSE for each of the

3×3=9

1+1+1=3

3. Answer any three questions :

(i) d5-high spin (ii) d^6 -low spin

(iii) d4-low spin

following:

(a)

P9/227

(b)	Discuss the geometrical isomerisms of $[Ma_2X_2]^{n\pm}$ and $[MA_4X_2]^{n\pm}$ type complexes. $1\frac{1}{2}+1\frac{1}{2}=3$
(c)	Draw and explain the Orgel diagram for the complex $[Cu(H_2O)_6]^{2+}$ ion. 1+2=3
(d)	Explain the term "Russell-Saunders coupling".
(e)	What are inner complexes? Give the characteristics of inner complexes. 1+2=3
4. (a)	Explain the mechanism of the following reaction in terms of S _N 1-CB-mechanism:
[Co(NH	$[Co(NH_3)_5(OH)]^{2+} + Cl^{-}$
(b)	Write a note on acid hydrolysis of cobalt (III) compounds with suitable example.
P9/227	(Continued)

5.	(a)	State	and	explain	with	suitable
	examples:				2+2=4	

- (i) Laporte selection rule
- (ii) Spin selection rule
- (b) What is the basis of crystal field theory?

 Draw the splitting patterns for octahedral and tetrahedral complexes in a crystal field.

 2+1+1=4
- 6. (a) What do you understand by lanthanide contraction? Discuss its causes. 1+2=3

Or

(b) Cerium is the only lanthanide which is stable in (+4) oxidation state. Justify the statement.

3

* * *