3 SEM TDC CHM M 1 (N/O)

2017 Maty 201,302 (November) Rof 201, 303 (Major) Starts 301, 302 (Major) Starts 301, 30 200 301, 303 Course: 301 Greo 301, 303

Che 301, 302

(Inorganic Chemistry—I) Confy G

(New Course)

Full Marks: 48 Pass Marks: 14

Time: 2 hours

The figures in the margin indicate full marks for the questions

Select the correct answer: 1.

 $1 \times 5 = 5$

- The complex ion which obeys the EAN (a) rule is
 - (i) $[Cu(NH_3)_4]^{2+}$
 - (ii) [Fe Cl4]
 - (iii) [Cu(CN)4]3-
 - (iv) [Fe(CN)6]3-

- (b) The spectroscopic free ion ground term for d^2 configuration is
 - (i) 1 S
 - (ii) 3 P
 - (iii) 2D
 - (iv) 3F
- (c) Which of the following compounds exhibits optical isomerism?
 - (i) [Pt(NH₃)₂Cl₂]
 - (ii) [Cr(gly)3]
 - (iii) [Co(NH₃)₃Cl₃]
 - (iv) [Pt(gly)2]
- (d) Which of the following is labile?
 - (i) $[Fe(CN)_6]^{3-}$
 - (ii) $[Fe(H_2O)_6]^{2+}$
 - (iii) [Cr(CN)₆]³⁻
 - (iv) [Mn(CN)6]4-

- (e) Which of the following does not belong to lanthanides?
 - (i) Am
 - (ii) Pm
 - (iii) Sm
 - (iv) Tm
- 2. Answer the following:

 $2 \times 5 = 10$

- (a) What are macrocyclic ligands? Give an example.
- (b) What do you understand by Mulliken's symbols A, B and E?
- (c) What is magnetic moment? How is it related to paramagnetism and diamagnetism?
- (d) Explain inert and labile complexes with examples.
- (e) What are the causes of lanthanide contraction?
- 3. (a) Write the IUPAC names of the following compounds: 1×2=2
 - (i) $Na[Co(CO)_4]$
 - (ii) $[(NH_3)_5Cr-OH-Cr(NH_3)_5]Cl_5$

8P/265

(Turn Over)

	(b)	Give the structural formulas of the following compounds: $1\times 2=2$	
		(i) Pentammineazidocobalt(III) sulphate	
		(ii) Tetrafluorooxochromate(IV) ion	
	(c)	What are chelating ligands? Discuss with a suitable example.	
4.	Ans	swer any three questions: 5×3=15	
	(a)	(i) On the basis of crystal field theory, explain the splitting of d-orbitals in an octahedral complex.	
		(ii) Discuss briefly why the <i>d</i> -orbital splitting is larger in octahedral complex than in tetrahedral one. 2	
	(b)	Predict the spin state and calculate CFSE for the following complex ions: $2\frac{1}{2} \times 2 = 5$	5
		(i) $[Mn (CN)_6]^{3-}$, pairing energy = 28800 cm^{-1} and $\Delta_0 = 38500 \text{ cm}^{-1}$	
		(ii) $[\text{Fe}(\text{H}_2\text{O})_6]^{2+}$, pairing energy = 17600 cm ⁻¹ and $\Delta_0 = 10400 \text{ cm}^{-1}$	
	(c,	Calculate the value of L and S for a d^4 ion and write the ground term for it. Show how this state splits in an octahedral crystal field. $3+2^2$	=5
8F	/26	5 (Continued	d)

- (d) How does valence bond theory account for the following? $2\frac{1}{2} \times 2=5$
 - (i) [Ni (CN)₄]²⁻ is diamagnetic and square planar.
 - (ii) [MnCl₄]²⁻ is paramagnetic and tetrahedral.
- (e) Discuss with suitable examples the stereoisomerism exhibited by the following types of complexes: 2½×2=5
 - (i) $[Ma_4b_2]$
 - (ii) $[M(AA)_2b_2]$

where a and b are monodentate ligands and AA is symmetrical bidentate ligand.

- 5. Answer any three questions: 3×3=9
 - (a) Discuss in detail the mechanism of acid hydrolysis of [Co(NH₃)₅Cl]²⁺.
 - (b) Discuss briefly the effect of the following factors on the rate of aquation of an octahedral complex: 1½×2=3
 - (i) Charge on the complex
 - (ii) Steric effect

(c)	Explain S _N 1 CB mechanism with a suitable example.	3
(d)	What is trans-effect? Outline the synthesis of cis- and trans-dichloro-diammineplatinum(0). How will you distinguish between them?	3

- 6. Answer any one question:
 - (a) What are the consequences of lanthanide contraction?
 - (b) Give three points of differences between lanthanides and actinides.

3

(Old Course)

Full Marks: 48
Pass Marks: 19

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Select the correct answer :

 $1 \times 5 = 5$

- (a) The high-spin configuration of Cr(II) ion in octahedral crystal field is
 - (i) $t_{2g} 4e_g 0$
 - (ii) $t_{2g}3e_g1$
 - (iii) $t_{2g} 3e_g 2$
 - (iv) $t_{2g}4e_g1$
- (b) The ligand which does not form inner complexes is
 - (i) acetylacetonato (acac)
 - (ii) glycinato (gly)
 - (iii) o-phenanthroline (o-phen)
 - (iv) None of the above

(c)	The spectroscopic free ion ground to	erm
	for d^2 configuration is	

- (i) 1 S
- (ii) ³ P
- (iii) 2D
- (iv) 3F

(d) Which of the following has the highest lability?

- (i) SF₆
- (ii) [PF₆]
- (iii) [A1F₆]³⁻
- (iv) $[SiF_6]^{2-}$

(e) Which of the following does not belong to lanthanides?

- (i) Am
- (ii) Pm
- (iii) Sm
- (iv) Tm

2. Answer the following:

 $2 \times 5 = 10$

(a) What are the L and S values of 3P , 1D , 3F and 2G ?

(b)	What is related	nagnetic to pa	moment? aramagneti	How	is it
	diamagne				

- (c) Write a note on coordination isomerism with suitable example.
- (d) What are inert and labile complexes?
- (e) Lanthanum exhibits only +3 oxidation states. Explain.
- 3. (a) Write the IUPAC names of the following: 2
 - (i) $[(NH_3)_5Co-NH_2-Co(NH_3)_4(H_2O)]Cl_5$
 - (ii) [Pt(NH₃)₄Cl₂][ZnCl₄]
 - (b) Write the formulas of the following compounds:
 - (i) Ammonium hexaisothiocyanatochromate(III)
 - (ii) Amminebromo-bis-(ethylenediamine) cobalt(III) ion
 - (iii) Octaquo-μ-dihydroxodiiron(III) nitrate

3

4. Answer any four questions:

 $4\times4=1$

4

- (a) How does the valence bond theory explain the shapes and magnetic properties of six coordinated complexes? Illustrate your answer by giving suitable example.
- (b) Predict the spin state and calculate crystal field stabilization energy for the following complexes:
 - (i) $[Cr(H_2O)_6]^{3+}$, pairing energy = 23500 cm⁻¹ and $\Delta = 13400$ cm⁻¹
 - (ii) $[\text{Co(NH}_3)_6]^{3+}$, pairing energy = 21000 cm⁻¹ and $\Delta = 23000 \text{ cm}^{-1}$
- (c) What do you mean by the term 'spectroscopy'? Write the spectroscopic free ion ground terms for the following:
 - (i) d^3
 - (ii) d6
- (d) What are 'spin' and 'laporte' selection rules?
- (e) Explain the following properties of transition metal complexes in the light of crystal field theory:

 (i) Col.

 2×2=4
 - (i) Colour of the complex
 - (ii) Magnetic property of the complex

	(f)	What is effective atomic number rule? Determine the effective atomic number of the central metal atom of the following compounds: 1+3=4	
		(i) K ₄ [Fe(CN) ₆]	
		(ii) [Cr(NH ₃) ₆]Cl ₃	
		(iii) Mn ₂ (CO) ₁₀	
5.	Ans	wer any three questions: 3×3=9	
	(a)	What are associative and dissociative mechanisms in ligand substitution reaction?	
	(b)	Discuss the effect of the following factors on the rate of acid hydrolysis of octahedral complex: $1\frac{1}{2}\times2=3$	
		(i) Charge on the substrate	
		(ii) Steric effect	
	(c)	Write a note on acid hydrolysis of cobalt(III) compounds with suitable example.	
	(d)	from [PtCl ₄] ² and other ligands, outline the synthesis of cis- and	
		$trans-[PtCl_2(NH_3)(NO_2)].$	3
	(e)	Discuss S _N 1 CB mechanism with suitable example.	3
8P/	265	(Turn Over)

6. Answer any one question :

(a)

3

Give three points of differences between lanthanides and actinides. (b)

What are the consequences of lanthanide contraction?
