1 SEM TDC CHMH (CBCS) C 1

2019

(December)

CHEMISTRY

(Core)

Paper: C-1

(Inorganic Chemistry)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

- **1.** Choose the correct answer from the following: 1×6=6
 - (a) Heisenberg's uncertainty principle is

(i)
$$\Delta x \cdot \Delta P = \frac{h}{4\pi m}$$

(ii)
$$\Delta x \cdot \Delta P = \frac{h}{mV}$$

(iii)
$$\Delta x \cdot \Delta P \ge \frac{h}{4\pi}$$

(iv)
$$\Delta x \cdot \Delta P \leq \frac{h}{4\pi}$$

(b) The standard electrode potentials of four electrodes are

Electrode : $Zn^{2+} | Zn \quad Cd^{2+} | Cd \quad Ag^{+} | Ag \quad Fe^{3+} | Fe$ $E^{\circ}(V)$: -0.76 -0.40 0.80 -0.44

Which of the following cells is not feasible?

- (i) $Zn|Zn^{2+}||Cd^{2+}||Cd^{2+}||$
- (ii) $Fe|Fe^{3+}||Zn^{2+}|Zn$
- (iii) Cd|Cd²⁺||Ag⁺|Ag
- (iv) Fe|Fe3+ ||Ag+ |Ag
- (c) The electronegativity of C, N, P and Si increases in the order
 - (i) C < N < Si < P
 - (ii) N < Si < C < P
 - (iii) Si < P < C < N
 - (iv) P < Si < N < C
- (d) Which of the following has the highest lattice energy?
 - (i) BeO
 - (ii) MgO
 - (iii) CaO
 - (iv) SrO

- (e) The geometrical shape of CIF₃ molecule is
 - (i) pyramidal
 - (ii) trigonal planar
 - (iii) T-shape
 - (iv) tetrahedral
- (f) Which of the following is paramagnetic?
 - (i) O2
 - (ii) CO
 - (iii) NO+
 - (iv) CN-
- 2. Answer the following questions: 2×9=18
 - (a) What are normalized and orthogonal wave functions? 1+1=2
 - (b) Write Schrödinger's wave equation and give the meanings of the symbols used there. 1+1=2
 - (c) Arrange H₂O, H₂S, H₂Se and H₂Te in the increasing order of bond angle, giving the proper explanation for this trend.

2

(d)	What do you mean by ionization potential? Why is the value of second ionization potential higher than the first ionization potential? 1+1=2
(e)	Define electron affinity. Electron affinity value increases from nitrogen to fluorine in the periodic table. Explain giving reason.
(f)	Which of the following orbitals are not possible and why? 2 1p, 2s, 2p and 3f
(g)	Using VSEPR theory, predict the structures of the following : $1\times 2=2$ (i) SF_4 (ii) XeF_2
(h)	Using Fazans' rule, explain that "AlF ₃ is high-melting solid while AlCl ₃ is low-melting volatile solid".
(i)	Arrange the following in the increasing order of bond length: 2 $O_2, O_2^-, O_2^+, O_2^{2+}$

3.	Ans	wer any <i>two</i> of the following questions : $4 \times 2 = 8$
	(a)	(i) State and explain the principles applied to build up the electronic configuration of nitrogen atom. 2
		(ii) Determine the values of n, l, m and s for the valence shell electron of potassium.
	(b)	Derive de Broglie equation. Calculate the wavelength associated with a moving electron having kinetic energy 1.375×10^{-25} J. ($h = 6.626 \times 10^{-34}$ J-s) $2+2=4$
	(c)	(i) Write the radial and angular wave functions for hydrogen atom. 2
		(ii) Write a note on contour boundary. 2
4.	Ans	swer any <i>two</i> of the following questions : 3×2=6
	(a)	What is effective nuclear charge? Explain on the basis of Slater's rule, why 4s orbital is filled earlier than 3d orbital taking potassium atom as an example. 1+2=3

- (b) What do you mean by electronegativity of an element? Calculate the electronegativity of fluorine using Allred-Rochow equation. (Covalent radius of fluorine = 0.72 Å) 1+2=3
- (c) Nitrogen has positive electron gain enthalpy whereas oxygen has negative. However, oxygen has lower ionization enthalpy than nitrogen. Explain.

3

5. Answer any *two* of the following questions:

3×2=6

- (a) What do you mean by percentage of ionic character? HBr molecule has H—Br bond length $1\cdot41\times10^{-10}$ m and its dipole moment is $0\cdot79\times10^{-29}$ cm.

 Calculate the percentage of ionic character of HBr molecule. (Given, electronic charge = $1\cdot602\times10^{-19}$ C) 1+2=3
- (b) What do you mean by hydrogen bond?
 What are the different types of hydrogen bond? Explain why o-hydroxybenzaldehyde is a liquid whereas p-hydroxybenzaldehyde is a solid.

 1/2+1+11/2=3

- (c) What do you mean by bond order of a molecule? The bond dissociation energy of C₂ (599 kJ mol⁻¹) decreases slightly on forming C₂⁺ (513 kJ mol⁻¹) and increases greatly on forming C₂⁻ (818 kJ mol⁻¹). Why?
 1+2=3
- 6. Write short notes on any two of the following: $2\frac{1}{2} \times 2=5$
 - (a) Solvation energy
 - (b) Defects in solids
 - (c) Mulliken-Jaffe electronegativity scales
- 7. What is standard electrode potential? Explain two important applications of its inorganic reaction. 1+1½+1½=4
