2018

(November)

CHEMISTRY

(Major)

(Both New/Old)

Course: 101

(Physical, Inorganic and Organic)

The figures in the margin indicate full marks for the questions

Write the answers to the separate Sections in separate books

Full Marks: 80
Pass Marks: 32/24

Time: 3 hours

SECTION-A

(Physical Chemistry)

(Marks : 26)

1. Choose the correct answer from the following:

 $1 \times 3 = 3$

- (a) Potassium crystallizes in b.c.c. unit cell. The number of unit cells present in 1.0 g of potassium is
 - (i) 7.7×10^{21}
 - (ii) 1.54×10²²
 - (iii) 6.022×10²³
 - (iv) 0.0256

(b) For one mole of an ideal gas, the kinetic energy is given by

8108

- O M dos (i) $E = \frac{1}{2}RT$ Out Max 1
 - (ii) $E = \frac{3}{2}RT$
 - (iii) $E = \frac{5}{2}RT$
 - (iv) $E = \frac{7}{2}RT$
 - (c) The rate of evaporation of a liquid depends upon
 - (i) surface area
 - (ii) temperature
 - (iii) nature of liquid
 - (iv) All of the above
 - 2. Answer any three questions from the following:

2×3=6

- (a) Show that the excluded volume is four times the actual volume of a gas molecule.
- (b) Frenkel defect is not shown by alkali metal halides but silver halides show this defect. Explain.
- (c) Describe any two factors upon which the vapour pressure of a liquid depends.
- (d) Explain why we have to define the heat capacities of gases under constant pressure and constant volume conditions.
- (e) Determine the interplanar spacing between the (221) planes of a cubic lattice of length 450 pm.

UNIT-I

3. Answer any two questions from the following:

31/2×2=7

- (a) What is critical phenomenon? Derive the expressions for the critical constants of a gas using van der Waals' equation of states. 1+2½=3½
- (b) (i) With the help of kinetic gas equation, deduce Charles' law.
 - (ii) Show that $\frac{RT_c}{P_cV_c} = \frac{8}{3}$.

11/2

2

	(c)	(i)	What do you mean by mean free path, collision diameter and collision frequency of a gas molecule? Explain the effect of temperature on mean free path. 1 $\frac{1}{2}+1=$			
		(ii)	State the law of equipartition of energy.	1		
			Unit—II			
4.	Answer any one question from the following:					
	(a)		scribe the method for determining the surface tension of a liquid in the oratory.	3		
	(b)	(i)	Write any two differences between nematic and smectic liquid crystals.	2		
		(ii)	Show that surface tension and surface energy have the same dimension.	1		
			Unit—III			
5. Answer any two questions from the following:						
	(a) Define unit cell. What parameters are used to describe a particular system of crystal? Name the seven crystal systems. Which of them is the most symmetrical and which one is the most unsymmetrical? ½+1+1+1=3½					
	(b)	(i)	With the help of band theory, explain the difference between a conductor and an insulator.	2		
		(ii)	Why does the electrical conductivity of semiconductors increase with increase in temperature?	1½		
	(c)	(i)	Classify each of the following as being either a p-type or an n-type semiconductor: (1) Si doped with In (2) Si doped with P	⁄2=1		
		(ii)	Gold (atomic radius = 0.144 nm) crystallizes in a face-centred unit cell. What is the length of the side of the cell?	1½		

SECTION—B

(Inorganic Chemistry)

(Marks: 27)

6.	Fin	d out the correct answer out of	the following:	1×3=3			
	(a) Which of the following transitions involves maximum energy?						
		(i) $M^-(g) \rightarrow M(g)$	(ii) $M(g) \rightarrow M^+(g)$				
		(iii) $M^+(g) \rightarrow M^{2+}(g)$	(iv) $M^{2+}(g) \to M^{3+}(g)$				
	(b)	The geometrical shape of CIF3	molecule is				
		(i) trigonal bipyramidal					
		(ii) T-shape	•				
		(iii) trigonal planar					
		(iv) pyramidal					
	(c)	Which of the following has largest bond angle?					
	. ,	(i) NH ₃	(ii) SbH ₃				
		(iii) PH ₃	(iv) AsH ₃				
7.	Ans	2×3=6					
	(a)	The first ionization energy of Be is higher than that of B, while the second ionization energy of B is higher than that of Be. Explain giving reason.					
	(b)	Using VSEPR theory, predict the structure of ClF ₃ .					
	(c)	Bond angle decreases from CH_4 (109.5°) to NH_3 (107°) to H_2O (104.5°). Explain with reason.					
			Sallamin a				
8.	Ans	Answer any two questions from the following:					
	(a) What do you mean by electronegativity of an element? Calculate the electronegativity of fluorine using Allred-Roschow equation. (Covalent						
		radius of fluorine = 0.72 Å)	·	1+2=3			

(b) Explain what is linear combination of atomic orbital. Show that the bond

(c) Draw the molecular orbital energy-level diagram for CO molecule and

2+1=3

2+1=3

order of Be₂ is zero.

calculate the bond order.

9. Answer any three questions from the following:

4×3=12

- (a) (i) With the help of Slater's rule, show that 4s orbital is filled earlier than a 3d orbital in K atom.
 - (ii) Calculate the effective nuclear charge at the periphery of Ti 3+ ion. 4
- (b) What is lattice energy of crystals? Draw Born-Haber cycle for the ionic solid M⁺X⁻ and show how the lattice energy can be computed with its help.

 1+2+1=4
- (c) Explain the following on the basis of molecular orbital theory: 2+2=4
 - (i) B2 molecule is paramagnetic in nature
 - (ii) N₂ molecule is more stable than NO molecule
- (d) (i) Among halides of calcium, i.e., CaF₂, CaCl₂, CaBr₂ and CaI₂; CaI₂ is most covalent. Explain with reason.
 - (ii) Find out the number of unpaired electron in O_2^+ and O_2^- . Also find out their bond order. 1+1=2

SECTION-C

(Organic Chemistry)

(Marks: 27)

10. Choose the correct answer of the following:

 $1\times3=3$

2

(a) The IUPAC name of the compound

is

- (i) 5-formyl hex-2en-3-one
- (ii) 5-methyl-4-oxo hex-2en-5al
- (iii) 3-keto-2-methyl hex-5-en-al
- (iv) 3-keto-2-methyl hex-4-en-al

- (b) The most stable radical is
 - (i) CH₃
 - (ii) CH₂
 - (iii) CH2=CH-CH2
 - (iv) CH2=CH
- (c) The reaction of methyl trichloroacetate (Cl₃C C OMe) with sodium methoxide (NaOMe) gives
 - (i) carbocation
 - (ii) carbene
 - (iii) carbanion
 - (iv) free radical
- 11. Answer any three questions from the following:

2×3=6

(a) Arrange the following carbocations in order of stability with proper reasoning:

Tropylium cation, benzyl carbocation, allylcarbocation and triphenyl methyl carbocation

is No molecule is more stable than NO molecule

- (b) PhO⁻ is a weaker base than CH₃—CH₂—O⁻. Explain on the basis of resonance effect.
- (c) Explain any one of the following:
 - (i) The C-N bond length in $\mathrm{CH_3CONH_2}$ is shorter than that in $\mathrm{CH_3-CH_2-NH_2}$.
 - (ii) Dipole moment of acetone is more than formaldehyde.
- (d) Butene-2 has greater stability than but-1-ene. Explain.
- (e) Write down the relationship between the molecules shown below:

Br — H — Br — CH₃

12. Answer any three questions from the following:

2×3=6

(a) Draw the energy profile for the reaction

$$A \xrightarrow{k_1} I$$
 (intermediate) $\xrightarrow{k_2} C$

and the reaction is endothermic.

2

2

(b) Define singlet and triplet carbene showing their structures.

(c) Arrange and offer your justification:

1+1=2

- (i) p-Methoxy benzoic acid and benzoic acid (in increasing order of acidity)
- (ii) Me₃C NH₂ and CH₃ NH₂ in aprotic solvent (in increasing order of basicity)
- (d) In the reactions given below

+ HBr
$$\stackrel{+40 \,^{\circ}\text{C}}{=}$$
 Br 1,4 adduct

Br 1,2 adduct

which one is kinetic controlled and which is thermodynamic controlled product? Explain with the help of energy profile diagram.

4

(e) What are nitrenes? How are they generated?

2

UNIT-II In DE 190 9 80 % at foncols

13. Answer any six questions from the following:

2×6=12

(a) Assign R and S to the following compounds:

2

- (b) Draw and give stereochemical designation E/Z for the geometrical isomers of 2,4-heptadiene.
- (c) What are the different simple axes of symmetry present in the benzene molecule? Which is the principal axis in case of benzene?

2

2

(d) Interconvert the following projection formula as directed (any two):

(e) Draw the stereoisomers of trihydroxyglutaric acid

${\rm HO_2CCH(OH)CH(OH)CH(OH)CO_2H}$

in Fischer projection. Which of them are optically active and which of them are meso form?

2

2

- (f) The presence of a chiral centre in an organic compound is neither a necessary nor a sufficient condition to show optical activity. Explain with giving examples.
- 2

2

- (g) The concentration of an optically active compound dissolved in ethyl alcohol is 3.05 g per 50 ml of solution.
 - (i) A portion of this solution in a 5 cm sample tube had observed rotation of -1.4°. Calculate the specific rotation of the compound.
 - (ii) Predict the observed rotation if the same solution was placed in a 10 cm tube.
- (h) You are given a racemic carboxylic acid, (±)-lactic acid and a pure optically active base (+)-phenyl ethyl-amine. How would you proceed to resolve the acid? Explain the principle.
