5 SEM TDC STS M 1 (N/O)

2019

(November)

STATISTICS

(Major)

Course: 501

(Estimation)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 80
Pass Marks: 24

Time: 3 hours

- 1. Select the correct one out of the given alternatives: 1×8=8
 - (a) Estimation is possible only in case of a
 - (i) parameter
 - (ii) sample
 - (iii) random sample
 - (iv) None of the above

- (b) $\frac{1}{n}\sum_{i}x_{i}$ for i=1, 2, ..., n is called (i) estimation (ii) estimate
 - (iii) estimator
 - (iv) interval estimate
- (c) The sample variance is not a/an ____ estimator, but it is a/an ____ estimator for population.
 - (i) unbiased, consistent respectively
 - (ii) biased, efficient respectively
 - (iii) consistent, unbiased respectively
 - (iv) None of the above
- (d) If the variance of an estimator attains its Cramer-Rao lower bound for variance, then the estimator is
 - (i) most efficient
 - (ii) sufficient
 - (iii) unbiased
 - (iv) All of the above
- (e) If a sufficient statistic exists for a parameter, then it will be a function of
 - (i) moment estimator
 - (ii) ML estimator
 - (iii) unbiased estimator
 - (iv) None of the above

(f)	The	method	of	moments	was	invented
	by					

- (i) Neyman
- (ii) Fisher
- (iii) Karl Pearson
- (iv) Snedecor
- (g) By decreasing the sample, the confidence interval becomes
 - (i) narrower
 - (ii) wider
 - (iii) fixed
 - (iv) None of the above
- (h) A range of values within which the population parameter is expected to occur is called
 - (i) confidence co-efficient
 - (ii) confidence interval
 - (iii) confidence limits
 - (iv) level of significance

2. Answer the following in brief:

2×8=16

- (a) Differentiate between point estimation and interval estimation.
- (b) $x_1, x_2, ..., x_n$ is a random sample from a normal population, $N(\mu, 1)$. Show that $t = \frac{1}{n} \sum_{i=1}^{n} x_i^2$ is an unbiased estimator of $\mu^2 + 1$.
- (c) State the sufficient condition for consistency.
- (d) What do you mean by minimum variance unbiased estimator (MVUE)?
- (e) State the invariance property of maximum likelihood estimator (MLE).
- (f) What do you mean by likelihood function?
- (g) Find the 95% confidence limit and confidence interval for population mean, μ of normal distribution.
- (h) Explain confidence limits.

3. (a) (i) Let X_1 , X_2 , X_3 and X_4 be independent random variables such that $E(X_i = \mu)$ and $V(X_i = \sigma^2)$ for i = 1, 2, 3, 4. If

$$Y = \frac{X_1 + X_2 + X_3 + X_4}{4}, \ Z = \frac{X_1 + X_2 + X_3 + X_4}{5}$$

$$T = \frac{X_1 + 2X_2 + X_3 - X_4}{4}$$

examine whether Y, Z and T are unbiased estimators of μ . What is the efficiency of Y relative to Z?

(ii) If $X_1, X_2, ..., X_n$ are random observations on a Bernoulli variate X, taking the value 1 with probability p and the value 0 with probability (1-p), then show that

$$\frac{\sum x_i}{n} \left(1 - \frac{\sum x_i}{n} \right)$$

is a consistent estimator of p(1-p).

Or

(b) (i) What is the necessary and sufficient condition for T to be sufficient estimator for θ ? Let $x_1, x_2, ..., x_n$ be a random sample from a uniform population on $[0, \theta]$. Find a sufficient estimator for θ .

(Turn Over)

5

5

- (ii) If T_1 and T_2 are two unbiased estimators $\gamma(\theta)$ having the same variance and ρ is the correlation coefficient between them, then show that $\rho \ge 2e-1$, where e is the efficiency of the each estimator.
- 4. (a) (i) Obtain the minimum variance bound estimator (MVBE) for μ of the normal population N(μ, σ²), where σ² is known.
 - (ii) If T_1 and T_2 are two unbiased estimators of a parameter θ with variances σ_1^2 and σ_2^2 and correlation co-efficient ρ , then obtain the best linear combination of T_1 and T_2 .

(b) (i) Show that

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

in random sampling from

$$f(x, \theta) = \frac{1}{\theta} e^{-\frac{x}{\theta}}$$
; $0 < x < \infty$
= 0 ; otherwise

is a minimum variance bound (MVB) estimator of θ and has variance $\frac{\theta^2}{n}$.

5

5

5

	alaimu	(ii)	Write a short note on Rao-Blackwell theorem.	5
5.			optimal properties of maximum dimethod of estimation.	5
6.	(a)	(i)	Find the MLE for the parameter λ of the Poisson distribution on the basis of a sample of size n . Also find its variance.	5
		(ii)	Prove that if a sufficient estimator exists, it is a function of MLE.	5
	-		Or	
	(b)	(i)	Explain the method of moments in the theory of estimation.	5
		(ii)	Discuss the method of least squares in the theory of estimation.	5
7.	(a)	In pop	random sampling from normal oulation <i>N</i> (μ, σ²), find the MLE for—	
		(i)	μ , when σ^2 is known;	
		(ii)	σ^2 , when μ is known;	
		(iii)	the simultaneous estimation of μ and σ^2 .	8

(b) Let $X_1, X_2, ..., X_n$ be a random sample from the p.d.f

$$f(x, \theta) = \theta e^{-\theta x}$$
; $0 < x < \infty$, $\theta > 0$
= 0; otherwise

Estimate θ using the method of moment.

Describe some characteristics of the method of moment.

6+2=8

- 8. Write an explanatory note on confidence interval and confidence co-efficient.
- 9. (a) For the distribution

$$f(x, \theta) = \theta e^{-\theta x}$$
; $0 < x < \infty$

obtain $100(1-\alpha)\%$ confidence interval for θ for large samples.

Or

(b) Explain how confidence interval can be constructed for large samples. A random sample of size 100 has mean 15, the population variance 25. Find the interval estimate of population mean with confidence levels of 95% and 99%. 5

(Old Course)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

- 1. Select the correct one out of the given alternatives: 1×8=8
 - (a) The theory of estimation was founded by
 - (i) Laplace
 - (ii) Fermat
 - (iii) Fisher
 - (iv) None of them
 - (b) Which of the following statistics is unbiased estimator?
 - (i) The sample mean
 - (ii) The sample variance
 - (iii) The sample proportion
 - (iv) All of the above
 - (c) If $t_n \stackrel{p}{\to} \theta$, than t_n is a/an ____ estimator of θ .
 - (i) unbiased
 - (ii) consistent
 - (iii) efficient
 - (iv) sufficient

- (d) Factorization theorem for sufficiency is also known as
 - (i) Fisher-Neyman theorem
 - (ii) Cramer-Rao theorem
 - (iii) Rao-Blackwell theorem
 - (iv) None of the above
- (e) MLE of θ , in a random sample of size n from $U(0, \theta)$ is
 - (i) the sample mean
 - (ii) the sample median
 - (iii) the largest-order statistics
 - (iv) the smallest-order statistics
- (f) In common, the estimators obtained by the method of MLE, are
 - (i) more efficient
 - (ii) less efficient
 - (iii) Cannot say about efficiency
 - (iv) None of the above
- (g) If $(1-\alpha)$ is increased, the width of a confidence interval is
 - (i) decreased
 - (ii) increased
 - (iii) consistent
 - (iv) same

- (h) A 95% confidence interval for the mean of a population is such that
 - (i) it contains 95% of the values in the population
 - (ii) there is a 95% chance that it contains all the values in the population
 - (iii) there is a 95% chance that it contains the mean of the population
 - (iv) there is a 95% chance that it contains the standard deviation of the population
- 2. Answer the following in brief:

2×8=16

- (a) What are estimate, estimator and estimation?
- (b) What are the important criteria of a good estimator?
- (c) Define consistent estimator.
- (d) State the Cramer-Rao inequality.

- (e) State the invariance property of MLE.
- (f) Mention the names of various methods of estimation of a parameter.
- (g) Define confidence interval and confidence co-efficient.
- (h) What do you mean by 99% confidence limits and confidence intervals for the estimation of population mean?
- 3. (a) (i) If $x_1, x_2, ..., x_n$ is a random sample where variate x taking the value 1 with probability p and taking the value 0 with probability 1-p, then show that $\overline{x}(1-x)$ is a consistent estimator of p(1-p).

(ii) For a random sample $x_1, x_2, ..., x_n$ taken from a finite population, show that

$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

is not an unbiased estimator of the parameter σ², but

$$\frac{n}{n-1}s^2 = \frac{1}{n-1}\sum_{i=1}^n (x_i - \bar{x})^2$$

is unbiased.

3+2=5

(b) (i) Let X_1, X_2, X_3 and X_4 be independent random variables such that $E(x_i) = \mu$ and $V(x_i) = \sigma^2$ for i = 1, 2, 3, 4. If

$$Y = \frac{X_1 + X_2 + X_3 + X_4}{4}, \ Z = \frac{X_1 + X_2 + X_3 + X_4}{5}$$
$$T = \frac{X_1 + 2X_2 + X_3 - X_4}{4}$$

examine whether Y, Z and T are unbiased estimators of μ . What is the efficiency of Y relative to Z?

5

(ii) Let $x_1, x_2, ..., x_n$ be a random sample of n observations from the population having p.d.f.

$$f(x) = \theta x^{\theta - 1} ; \quad 0 \le x \le 1, \quad \theta > 0$$

Find the sufficient statistic for θ .

5

4. (a) (i) Explain minimum variance unbiased estimator (MVUE) with examples. If t_n is an unbiased estimator of θ , find Cramer-Rao bound of it.

	(ii)	State the sufficient condition for consistency. Give the statements of the factorization theorem and Rao-Blackwell theorem.	4=5
		Or .	
(b)	(i)	If T_1 and T_2 are two unbiased estimators of $\gamma(\theta)$ having the same variance and ρ is the correlation coefficient between them, then show that $\rho \ge 2e-1$, where e is the efficiency of each estimator.	5
	(ii)	Let $x_1, x_2,, x_n$ be a random sample from an $N(\mu, \sigma^2)$ population. Find the sufficient estimators for μ and σ^2 .	5
State	e the	e important properties of MLE.	5
(a)	(i)	State and explain the principle of MLE.	5
	(ii)	Find the MLE for the parameter λ of the Poisson distribution on the basis of a sample of size n . Also find its variance.	5
(b)	(i)	Explain the method of minimum chi square in the theory of estimation.	5

5.

6.

(ii) Let $x_1, x_2, ..., x_n$ be a random sample of n observations from a Poisson population whose p.d.f. is

$$p(x) = \frac{e^{-\theta}\theta^x}{x!};$$
 $x = 0, 1, 2, ...$

Find the estimation of θ by the method of moment.

5

7. (a) Explain the method of least squares in the theory of estimation and write the assumptions for estimation. 4+4=8

Or

- (b) In random sampling from normal population $N(\mu, \sigma^2)$, find the MLE for—
 - (i) μ , when σ^2 is known;
 - (ii) σ^2 , when μ is known;
 - (iii) the simultaneous estimation of μ and σ^2 .

8

Distinguish between point estimation and interval estimation.

5

9. (a) Obtain $100(1-\alpha)\%$ confidence interval for the parameter θ and σ^2 of the normal distribution

$$f(x; \theta, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\theta}{\sigma}\right)^2}$$

 $-\infty < \theta < \infty$, $\sigma > 0$, $-\infty < x < \infty$

(b) For the distribution

$$f(x, \theta) = \theta e^{-\theta x}, \quad 0 < x < \infty$$

obtain the $100(1-\alpha)\%$ confidence interval for θ (for large sample).

* * *