3 SEM TDC STS M 1 (N/O)

2019

(November)

STATISTICS

(Major)

Course: 301

(Probability and Distribution—I)

Full Marks: 80 Pass Marks: 24/32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the given alternatives: 1×8=8
 - (a) For the sample space $S = \{e_1, e_2, e_3\}$
 - (i) $P(e_1) + P(e_2) + P(e_3) > 1$
 - (ii) $P(e_1) + P(e_2) + P(e_3) = 1$
 - (iii) $P(e_1) + P(e_2) + P(e_3) < 1$
 - (iv) None of the above
 - (b) If A and B are two independent events, then $P(\overline{A} \cap \overline{B})$ is equal to
 - (i) $P(\overline{A}) \cdot P(\overline{B})$
 - (ii) $1 P(A \cup B)$
 - (iii) [1 P(A)][1 P(B)]
 - (iv) All of the above

- (c) If A_1 , A_2 and A_3 are three mutually exclusive events, then the probability of their union is equal to
 - (i) $P(A_1) P(A_2) P(A_3)$
 - (ii) $P(A_1) + P(A_2) + P(A_3) P(A_1A_2A_3)$
 - (iii) $P(A_1) + P(A_2) + P(A_3)$
 - (iv) $P(A_1)P(A_2) + P(A_1)P(A_3) + P(A_2)P(A_3)$
- (d) If F(x) is a distribution function of a random variable, then
 - (i) F(x) > 1
 - (ii) F(x) < 0
 - (iii) $0 \le F(x) \le 1$
 - (iv) None of the above
- (e) For two random variables X and Y with E(X) = 2 and E(Y) = 4, E(2X 5Y) will be
 - (i) -16
 - (ii) 24
 - (iii) -2
 - (iv) 108
- (f) If X is a random variable which can take only non-negative values, then
 - (i) $E(X^2) = [E(X)]^2$
 - (ii) $E(X^2) \ge [E(X)]^2$
 - (iii) $E(X^2) \le [E(X)]^2$
 - (iv) None of the above

- (g) If X and Y are two variables, then there can be at most
 - (i) one regression line
 - (ii) three regression lines
 - (iii) two regression lines
 - (iv) four regression lines
- (h) The conditional probability density function of X given Y = y for a joint density $f_{XY}(x, y)$ can be found by the formula

(i)
$$f_{X|Y}(x|y) = \frac{f_{XY}(x, y)}{f_X(x)}$$

(ii)
$$f_{X|Y}(x|y) = f_{Y|X}(y)f_{XY}(x, y)$$

(iii)
$$f_{X|Y}(x|y) = \frac{f_{XY}(x, y)}{f_{Y}(y)}$$

- (iv) None of the above
- 2. Answer the following questions: 2×8=16
 - (a) Write down the axiomatic definition of probability.
 - (b) State and prove the addition theorem of probability of two events A and B.
 - (c) A and B are two events such that $P(A \cup B) = \frac{3}{4}$, $P(A \cap B) = \frac{1}{4}$ and $P(\overline{A}) = \frac{2}{3}$. Find (i) P(B) and (ii) $P(A \cap \overline{B})$.

- (d) What are the properties of distribution function?
- (e) Prove that if X and Y are two independent random variables, then E(XY) = E(X)E(Y).
- (f) Write the properties of moment generating function.
- (g) Find the correlation coefficient between random variables X and Y, if $V(X) = V(Y) = \frac{1}{4}$ and $V(X Y) = \frac{1}{3}$.
- (h) Define joint probability mass function, marginal probability mass function and conditional probability mass function.
- 3. What are meant by mutually exclusive and exhaustive events associated with random experiments? Find P(A), given that $P(B) = \frac{3}{2}P(A)$ and $P(C) = \frac{1}{2}P(B)$, where A, B and C are mutually exclusive and exhaustive events.
- **4.** (a) If A, B and C are random events in a sample space and if A, B and C are pairwise independent and A is independent of $(B \cup C)$, then prove that A, B and C are mutually independent.
 - (b) For any two events A and B, prove that $P(A \cap B) \le P(A) \le P(A \cup B) \le P(A) + P(B)$.

4

3

4

- **5.** Answer any *two* of the following questions: $5 \times 2 = 10$
 - (a) Two dice are thrown once. Find the probability of getting an odd number on the first die or total of 7.
 - (b) The probabilities of X, Y and Z becoming manager are $\frac{4}{9}$, $\frac{2}{9}$ and $\frac{1}{3}$ respectively. The probabilities that the bonus scheme will be introduced if X, Y and Z become manager are $\frac{3}{10}$, $\frac{1}{2}$ and $\frac{4}{5}$ respectively. If bonus scheme has been introduced, what is the probability that the manager appointed was X?
 - (c) State and prove Bayes' theorem.
- **6.** Answer any *three* of the following questions: $7 \times 3 = 21$
 - (a) Let X be a continuous random variable with probability density function given by—

$$f(x) = \begin{cases} kx & , & 0 \le x < 1 \\ k & , & 1 \le x < 2 \\ -kx + 3k, & 2 \le x < 3 \\ 0 & , & \text{elsewhere} \end{cases}$$

- (i) Determine the constant k.
- (ii) Also determine F(x), the distribution function.

- (b) Define mathematical expectation of discrete and continuous random variable and function. Two unbiased dice are thrown. Find the expected values of the sum of numbers of points on them.
- (c) Let the random variable X assumes the value r with the probability law

$$P(X = r) = q^{r-1}p; r = 1, 2, 3 \cdots$$

Find the moment generating function of *X* and hence its mean and variance.

(d) For cumulant generating function $k_X(t) = \log_e M_X(t)$, show that

mean =
$$k_1$$

 $\mu_2 = k_2$ = variance
 $\mu_3 = k_3$
 $\mu_4 = k_4 + 3k_2^2$

- (e) (i) Find the characteristic function, if $P(x) = \frac{e^{-\lambda} \lambda^x}{|x|}; x = 0, 1, \dots \infty$
 - (ii) A random variable X assumes the values $\lambda_1, \lambda_2, \cdots$ with probabilities U_1, U_2, \cdots respectively. Show that $P_k = \frac{1}{|\underline{k}|} \sum_{j=0}^{\infty} U_j e^{-\lambda j} (\lambda_j)^k; \quad \lambda_j > 0,$

 $\Sigma U_j = 1$ is a probability distribution. Find its generating function.

7. Answer any two of the following questions:

5×2=10

- (a) Two fair dice are thrown simultaneously. Let X denotes the number on the first die and Y denotes the number on the second die. Find the following probabilities:
 - (i) P(X+Y=8)
 - (ii) $P[(X+Y) \ge 8]$
 - (iii) P(X + Y = 6 | Y = 4)
- (b) A two-dimensional random variable (X, Y) has a joint probability mass function $P(x, y) = \frac{1}{27}(2x + y)$, where x and y can assume only the integer values 0, 1 and 2. Find the marginal distribution of X and Y and also the conditional distribution of Y for X = x.
- (c) Suppose that two-dimensional continuous random variable (X, Y) has joint probability density function given by

$$f(x, y) = \begin{cases} 6x^2y, & 0 < x < 1, & 0 < y < 1 \\ 0, & \text{elsewhere} \end{cases}$$

- (i) Verify that $\int_0^1 \int_0^1 f(x, y) dxdy = 1$.
- (ii) Find $P\left(0 < X < \frac{3}{4}, \frac{1}{3} < Y < 2\right)$, P(X + Y < 1), P(X > Y) and P(X < 1|Y < 2).
- What do you mean by regression? Define regression coefficient.

0

4