Total No. of Printed Pages-7

3 SEM TDC STS M 2 (N/O)

2019

(November)

STATISTICS

(Major)

Course: 302

(Numerical Methods)

(New and Old Course)

Full Marks: 80
Pass Marks: 24/32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct alternative out of the given ones: 1×8=8
 - (a) If f(x) be a polynomial of nth degree, then

(i)
$$\Delta^n f(x) = 0$$

(ii)
$$\Delta^{n-1} f(x) = \text{constant}$$

(iii)
$$\Delta^{n+1}f(x)=0$$

(iv)
$$\Delta^{n+1} f(x) = \text{constant}$$

(b) Which one of the following is not correct?

(i)
$$E^m E^n f(x) = E^{m+n} f(x)$$

(ii)
$$E \nabla = \nabla E = \Delta$$

(iii)
$$E^{-n} f(x) = f(x - nh)$$

(iv)
$$E^2 f(x) = [Ef(x)]^2$$

(c) The central difference operator 'δ' is given by

(i)
$$E^{\frac{1}{2}} - E^{-\frac{1}{2}}$$

(ii)
$$E^{\frac{1}{2}} + E^{-\frac{1}{2}}$$

(iii)
$$E^{-\frac{1}{2}} - E^{\frac{1}{2}}$$

(iv)
$$\frac{1}{2}(E^{\frac{1}{2}}+E^{-\frac{1}{2}})$$

- (d) Gauss forward formula is suitable for interpolation
 - (i) near the beginning of a series
 - (ii) near the middle of a series
 - (iii) of both beginning and end of a series
 - (iv) near the end of a series

- (e) Which of the following interpolation formulas can be used for inverse interpolation?
 - (i) Newton's forward interpolation formula
 - (ii) Newton's backward interpolation formula
 - (iii) Lagrange's interpolation formula
 - (iv) Newton's divided difference formula
- (f) Simpson's one-third rule is called
 - (i) straight line formula
 - (ii) hyperbolic formula
 - (iii) parabolic formula
 - (iv) None of the above
- (g) A formula which is applicable to any number of sub-intervals whether even or odd is
 - (i) Weddle's formula
 - (ii) general quadrature rule
 - (iii) trapezoidal rule
 - (iv) All of the above

- (h) Transcendental equation can be solved by using
 - (i) bisection method only
 - (ii) iterative method only
 - (iii) Newton-Raphson method only
 - (iv) All of the above
- 2. Answer any two of the following:

4×2=8

- (a) Prove the operators relation $(1 + \Delta)(1 \nabla) \equiv 1$
- (b) Evaluate

$$\Delta^3[(1-x)(1-2x)(1-3x)]$$

(c) Evaluate

$$\Delta\left(\frac{1}{1+x^2}\right)$$

3. (a) Use the method of finite differences to sum of the series

$$1^3 + 2^3 + 3^3 + \dots + n^3$$

5

Or

(b) Sum to n terms the series whose xth term is

$$x(x-1)(x-2)$$

- 4. (a) Establish an interpolation formula for equal intervals.
 - (b) The following table is given:

x	0	1	2	3	4
f(x)	3	6	11	18	27

What is the form of the function f(x)? 4

- 5. Answer any three of the following: 8×3=24
 - (a) (i) Derive Gauss's forward formula for central differences.
 - (ii) Use Stirling's formula to find f(35), given that f(20) = 512, f(30) = 439, f(40) = 346, f(50) = 243.
 - (b) What are divided differences? Prove that divided difference of a polynomial of nth degree is constant. 2+6=8

4

4

4

(c)	Describe a	n	nethod	for	inverse	
	interpolation	. If	$y_1 = 4$,	$y_3 = 12,$	$y_4 = 19$	
	and $y_x = 7$, t					+4=8

(d) Write down Newton's interpolation formula with divided difference. Given f(0) = 8, f(1) = 68, f(5) = 123, find f(2).

3+5=8

(e) (i) Deduce Lagrange's formula for interpolation.

(ii) Find the form of the function, given that

x	0	1	2	5	
f(x)	2	3	12	147	

4

4

6. Answer any three of the following:

9×3=27

(a) What is numerical differentiation? When do we use it? Find first and second derivatives of the function given below at the point $x = 1 \cdot 2$: 4+5=9

x	1	2	3	4	5
y	0	1	5	6	8

(b) State and prove Simpson's $\frac{1}{3}$ rd rule for numerical integration. Use Simpson's $\frac{3}{8}$ th rule to find

$$\int_0^6 \frac{dx}{(1+x)^2}$$
 4+5=9

- (c) Define algebraic and transcendental equations. Give example of each. Find the root of $x^4 x 10 = 0$ which is nearer to x = 2, correct to three places of decimals by using Newton-Raphson method.
- (d) Write short notes on the following: 3+3+3=9
 - (i) Regula falsi method
 - (ii) Bisection method
 - (iii) Newton-Raphson method

**