5 SEM TDC STS M 1 (N & O)

2016

(November)

STATISTICS

(Major)

Course: 501

(Estimation)

(Both New and Old Course)

The figures in the margin indicate full marks for the questions

Full Marks: 80

Pass Marks: 24 (New)/32 (old)

Time: 3 hours

- 1. Select the correct one out of the given alternatives: 1×8=8
 - (a) If the expected value of an estimator is not equal to its parametric function $r(\theta)$, it is said to be a
 - (i) unbiased estimator
 - (ii) biased estimator
 - (iii) consistent estimator
 - (iv) None of the above

- (b) If x_1, x_2, \dots, x_n be a random sample drawn from a $N(\mu, \sigma^2)$ population, the sufficient statistics from is
 - (i) $\Sigma(x_i \overline{x})$
 - (ii) Σx_i
 - (iii) Σx_i^2
 - (iv) None of the above
- (c) Factorisation theorem for sufficiency is known as
 - (i) Rao-Blackwell theorem
 - (ii) Cramer-Rao theorem
 - (iii) Fisher-Neyman theorem
 - (iv) None of the above
 - (d) Let θ be an unknown parameter and T_1 be an unbiased estimator of θ . If $\operatorname{var}(T_1) \leq \operatorname{var}(T_2)$ for T_2 to be any other unbiased estimator. Then T_1 is known as
 - (i) minimum variance unbiased estimator
 - (ii) unbiased and efficient estimator
 - (iii) consistent and efficient estimator
 - (iv) unbiased, consistent and minimum variance estimator

(e) Let
$$T_n$$
 be an estimator based on a sample x_1, x_2, \dots, x_n of the parameter θ .
Then T is a consistent estimator of θ if

(i)
$$P(T_n - \theta > \varepsilon) = 0 \quad \forall \ \varepsilon > 0$$

(ii)
$$P(|T_n - \theta| < \varepsilon) = 0$$

(iii)
$$\lim_{n \to \infty} P(|T_n - \theta| > \varepsilon) = 0 \quad \forall \ \varepsilon > 0$$

(iv)
$$\lim_{n\to\infty} P(T_n - \theta > \varepsilon) = 0 \quad \forall \ \varepsilon > 0$$

- (f) The maximum likelihood estimator which are obtained by maximising the function of joint density of random variables are generally
 - (i) unbiased and consistent
 - (ii) unbiased and inconsistent
 - (iii) consistent and invariant
 - (iv) invariant and unbiased
- (g) The 95% confidence limit for θ in case of large samples and of density function

$$f(x, \theta) = \theta e^{-\theta x}; 0 < x < \infty$$

is

(i)
$$(1 \pm 1.96 / \sqrt{n}) \bar{x}$$

(ii)
$$(1 \pm 1.96\bar{x}/\sqrt{n})/\bar{x}$$

(iii)
$$(1 \pm 1.96 / \sqrt{n}) / \bar{x}$$

(iv) None of the above

- (h) In case there exist more than one set of confidence interval with the same confidence coefficient, we look for
 - (i) the shortest of all intervals
 - (ii) the largest of all intervals
 - (iii) Both (i) and (ii)
 - (iv) None of the above

2. Answer the following in brief:

2×8=16

- (a) Mention the criterion that should be satisfied by a good estimator.
- (b) If T_n is unbiased estimator of θ , then show that T_{n^2} is a biased estimator of θ^2 .
- (c) State the sufficient condition for consistency.
- (d) If T_1 and T_2 are unbiased estimators of θ and $var(T_1) = 0 \cdot 2$ and $var(T_2) = 0 \cdot 6$, compute the relative efficiency of T_1 as compared to T_2 .
- (e) Elucidate what technique you will apply when maximum likelihood estimation fails.
- (f) Define confidence interval and confidence coefficient.

- (g) State the invariance property of MLE.
- (h) Explain the method of obtaining confidence limit.
- 3. (a) (i) Let x_1, x_2, \dots, x_n be a random sample from $N(\mu, \sigma^2)$. Find sufficient estimator for μ and σ^2 .

(ii) If x_1, x_2, \dots, x_n is a random sample where variate x takes the value 1 with probability p and takes the value 0 with probability 1 - p, then show that $\overline{x}(1 - \overline{x})$ is a consistent estimator of p(1 - p).

Or

- (b) (i) Prove that for Cauchy's distribution not sample mean but sample median is a consistent estimator of the population mean.
 - (ii) If T_1 and T_2 be two unbiased estimators of $r(\theta)$ having the same variance and ρ is the correlation coefficient between them, then show that $\rho \ge 2e-1$ where e is the efficiency of each estimator.

5

5

5

4.	(a)		If T_1 and T_2 be two unbiased estimators of $r(\theta)$ with variances σ_1^2 and σ_2^2 and correlation coefficient ρ . What is the variance of such a combination? Obtain the minimum variance bound estimator (MVBE) for μ of the normal population $N(\mu, \sigma^2)$ where	5
			σ ² is known.	5
	(b)	<i>(i)</i>	Find if MVB estimator exists for θ in the Cauchy's population with density function $f(x, \theta) = \frac{1}{\pi} \frac{1}{1 + (x - \theta)^2}; -\infty < x < \infty$	5
	pla sy	(ii)	Let x_1, x_2, \dots, x_n be a random sample from a uniform population $[0, \theta]$. Find a sufficient estimator for θ .	5
5.	State	e th	e important properties of MLE.	5
6.	(a)	(i)	Find the MLE for the parameter λ of the Poisson distribution on the basis of a sample of size n . Also find its variance	

its variance.

5

		(ii) Obtain the most general form of distribution differentiable in θ for which sample mean is MLE. Or	5			
	(b)	(i) Write an explanatory note on the method of minimum variance in the	_			
		theory of estimation. (ii) Explain the method of moments in the theory of estimation.	5			
7.	(a)	population $N(μ, σ2)$, find the MLE for—				
		 (i) μ, when σ² is known; (ii) σ², when μ is known; 				
		(iii) the simultaneous estimation of μ and σ^2 .	8			
	(b)	State Cramer-Rao inequality for lower bound of variance of an unbiased				
		estimator. Show that $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$ in				
		random sample from				
		$f(x, \theta) = \frac{1}{\theta}e^{-x/\theta}$; $0 < x < \infty$ $0 < \theta < \infty$				
		=0 ; otherwise				
		is an MVB estimator of θ and has				
		variance θ^2/n . 2+6 (Turn Ove				

8. Distinguish between point estimation and interval estimation.

5

9. (a) Obtain $100(1-\alpha)\%$ confidence interval for the parameter μ and σ^2 of the normal distribution

$$f(x, \mu, \sigma) = \frac{1}{\sigma\sqrt{2}\pi} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

$$-\infty < x < \infty$$

$$-\infty < \mu < \infty$$

$$\sigma > 0$$
8

Or

(b) Write an explanatory note on interval estimation. A random sample of size 100 has mean 15, the population variance 25. Find the interval estimate of population mean with a confidence level of 95% and 99%.

4+4=8

* * *