3 SEM TDC STS M 2 (N/O)

2016

(November)

STATISTICS

(Major)

Course: 302

(Numerical Methods)

(New Course)

Full Marks: 80 Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

- Choose the correct alternative out of the given ones:
 - (a) Which one of the following is not true?

(i)
$$\nabla y_n = y_{n-1} - y_n$$

(ii)
$$\Delta^2 y_0 = y_2 - 2y_1 + y_0$$

(iii)
$$\Delta y_1 = y_2 - y_1$$

(iv)
$$\nabla^2 y_2 = y_2 - 2y_1 + y_0$$

- (b) Divided differences are symmetric functions of
 - (i) arguments
 - (ii) entries
 - (iii) both arguments and entries
 - (iv) neither arguments nor entries
- (c) The central difference operator δ is given by
 - (i) $E^{\frac{1}{2}} E^{-\frac{1}{2}}$
 - (ii) $E^{\frac{1}{2}} + E^{-\frac{1}{2}}$
 - (iii) $E^{-\frac{1}{2}} E^{\frac{1}{2}}$
 - (iv) $\frac{1}{2}(E^{\frac{1}{2}}+E^{-\frac{1}{2}})$
- (d) Inverse interpolation method can be used
 - (i) only when arguments are at equal interval
 - (ii) for both equal and unequal intervals of arguments
 - (iii) only when entries are at equal interval
 - (iv) only when both arguments and entries are at unequal interval

- (e) Gauss forward formula is suitable for interpolation
 - (i) near the beginning of a series
 - (ii) near the middle of a series
 - (iii) of both beginning and end of a series
 - (iv) near the end of a series
- (f) Weddle's rule can be applied when the number of subintervals is
 - (i) multiple of 4
 - (ii) multiple of 6
 - (iii) multiple of 8
 - (iv) any positive integer
- (g) Which one is not true?
 - (i) Zero of a polynomial f(x) is given by f(x) = 0
 - (ii) Every polynomial of degree n has exactly n roots
 - (iii) Every polynomial of degree n has exactly n real roots
 - (iv) $(x^n 1)$ is a polynomial of degree n in x

- (h) Which one is not true?
 - (i) Bisection method always converges
 - (ii) Newton-Raphson method is for finding a real root of an equation
 - (iii) Regula falsi method cannot be used for transcendental equation
 - (iv) Newton-Raphson method does not always converge
- **2.** (a) Define the operators E, ∇ and Δ , and establish that (i) $\Delta = \nabla E$ and (ii) $E = 1 + \Delta = e^{hD}$, where h = interval of differencing and $Dy_x = \frac{d}{dx}y_x$.

(b) Prove that

$$e^{x} = \left(\frac{\Delta^{2}}{E}\right) e^{x} \cdot \frac{Ee^{x}}{\Delta^{2}e^{x}}$$

the interval of differencing being h. 3

3. (a) Using the method of separation of symbols, show that

$$e^{x}(u_0 + x\Delta u_0 + \frac{x^2}{2!}u_0 + \cdots) = u_0 + u_1x + u_2\frac{x^2}{2!} + \cdots$$

6

Or

(b) Use the method of finite differences to find the sum up to n terms of series

(i)
$$\sum \frac{x+3}{x(x+1)(x+2)}$$

Or

(ii)
$$1^3 + 2^3 + 3^3 + \cdots$$

6

- 4. Answer any three of the following:
 - (a) Derive Newton's backward interpolation formula.

Given:

x	0	1	2	3	4
f(x)	3	6	11	18	27

Find the form of the function f(x).

- (b) For interpolation with equal interval, when do we use—
 - (i) Newton's formulae;
 - (ii) Gauss' formulae?

Write down the Stirling's central difference formula and mention in what situation it is more suitable.

Given, f(20) = 49225, f(25) = 48316, f(30) = 47236, f(35) = 45926, f(40) = 44306. Use Stirling's formula to find f(28). 5+5=10

- (c) Write down Newton's interpolation formula with divided difference. Given, f(0) = 8, f(1) = 68, f(5) = 123. Find f(2).

 Describe a method for inverse interpolation and give two applications of this method. 5+5=10
- (d) Prove that the *n*th divided differences of a polynomial of degree *n* are constants.

 If f(0) = 0, f(1) = 1, f(2) = 20, find the value of *x* for which f(x) = 19. 6+4=10
- 5. (a) Write a note on numerical differentiation.
 - (b) What is numerical quadrature?
 - (c) Define algebraic and transcendental equations. Give example of each.

4+2+3=9

- 6. Answer any two of the following:
 - (a) Using the relation

$$1 - \nabla = e^{-hD}$$

or, otherwise, prove that

$$\left(\frac{dy}{dx}\right)_{x=x_n} = \frac{1}{h} \left[\nabla y_n + \frac{1}{2} \nabla^2 y_n + \frac{1}{3} \nabla^3 y_n + \cdots \right]$$

where h = interval of differencing and $Dy_x = \frac{d}{dx}y_x.$

Given:

x	1.0	1.2	1.4	1.6	1.8	2.0
f(x)	0	·128	-544	1.296	2.432	4

Find f'(2).

5+4=9

(b) Derive Simpson's one-third rule. If $u_x = a + bx + cx^2$, prove that

$$\int_{1}^{3} u_{x} dx = 2u_{2} + \frac{1}{12} (u_{0} - 2u_{2} + u_{4})$$
5+4=9

(c) Describe Newton-Raphson method for finding real root of an equation. Mention one of the limitations of the method.

Solve $x^3 - x - 1 = 0$ for a root between 1 and 2 by bisection method (do three iterations only). 5+4=9

(Turn Over)

(Old Course)

Full Marks: 80 Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- Choose the correct alternative out of the given ones:
 - (a) If $\phi_n(x)$ is a polynomial of *n*th degree, $\Delta^n \phi_n(x)$ will be
 - (i) a constant
 - (ii) zero
 - (iii) a function of x
 - (iv) None of the above
 - (b) With usual notation, nth forward difference is given by

(i)
$$\Delta^n f(x) = \Delta^{n-1} f(x+h) - \Delta^{n-1} f(x)$$

(ii)
$$\Delta^n f(x) = \Delta^{n-1} f(x) - \Delta^{n-1} f(x+h)$$

(iii)
$$\Delta^n f(x) = \Delta^n f(x+h) - \Delta^{n-1} f(x)$$

(iv)
$$\Delta^n f(x) = \Delta^{n+1} f(x+h) - \Delta^n f(x)$$

- (c) The process of computing the value of the function outside the range of given values of the variable is called
 - (i) interpolation
 - (ii) extrapolation
 - (iii) divided difference
 - (iv) numerical differentiation
- (d) Which of the following interpolation formulae can be used for inverse interpolation?
 - (i) Newton's forward interpolation formula
 - (ii) Newton's backward interpolation formula
 - (iii) Lagrange's interpolation formula
 - (iv) Newton's divided difference formula
- (e) Bessel's interpolation formula is the most appropriate to estimate for a value in a series which lies
 - (i) at the end
 - (ii) in the beginning
 - (iii) in the middle of the central interval
 - (iv) outside the series

- (f) The process by which the derivatives of a function at some values of the independent variable are found out for given set of values of the function is known as
 - (i) numerical integration
 - (ii) numerical differentiation
 - (iii) Newton-Raphson method
 - (iv) All of the above
- (g) To apply trapezoidal rule of numerical integration, the number of subintervals must be
 - (i) an even positive integer
 - (ii) multiple of 3
 - (iii) any positive number
 - (iv) None of the above
- (h) Transcendental equations can be solved
 - (i) bisection method
 - (ii) iterative method
 - (iii) Newton-Raphson method
 - (iv) All of the above

2. Answer the following in brief:

2×8=16

- (a) Establish the relation, $(1 + \Delta)(1 \nabla) \equiv 1$.
- (b) Evaluate

$$\left(\frac{\Delta^2}{E}\right)x^3$$

the interval of differencing being unity.

- (c) What is interpolation? What are the underlying assumptions for the validity of various methods of interpolation?
- (d) Find the third divided difference with arguments 2, 4, 9, 10 of the function $f(x) = x^3 2x$.
- (e) What is the difference between Lagrange's method and Newton's method as a method for interpolation?
- (f) What is inverse interpolation? Name three methods which are generally used for inverse interpolation.
- (g) What are the basic conditions to apply in Simpson's one-third rule?
- (h) What are meant by algebraic and transcendental equations?

- (a) (i) Define the terms arguments entry, leading term and interval of differencing in a difference table.
 - (ii) If Δ and ∇ be the first descending difference operator and first ascending difference operator respectively of a function f(x), show that $(\Delta \nabla) \equiv \Delta \nabla$.

Or

- (b) What do you mean by calculus of finite differences? Prove that the nth differences of a rational integral function (polynomial) of the nth degree are constant when the values of the independent variable are at equal intervals.
 2+7=9
- 4. Answer any two of the following:
 - (a) (i) Prove that

$$f(4) = f(3) + \Delta f(2) + \Delta^2 f(1) + \Delta^3 f(1)$$

(ii) Use the method of separation of symbols to prove the following identity:

$$u_0 + u_1 + u_2 + \dots + u_n = {}^{n+1}C_1 u_0 + {}^{n+1}C_2 \Delta u_0 + {}^{n+1}C_3 \Delta^2 u_0 + \dots + \Delta^n u_0$$

4

5

(13)

- (iii) Derive the Newton-Gregory forward interpolation formula for equal intervals. 4+4+5=13
- (b) What are the divided differences? Derive the Newton's divided difference formula. Establish the relation between divided differences and ordinary differences. Prove that

$$\bigwedge_{bcd}^{3} (1/a) = -\frac{1}{abcd}$$

where \triangle is the divided difference operator. 1+4+4+13

- (c) Define central difference operator δ and the average operator μ . Derive Gauss' backward interpolation formula. Apply a central difference formula to obtain f(25). Given that f(20) = 14, f(24) = 32, f(28) = 35, f(32) = 40. 2+5+6=13
- (d) Derive Lagrange's interpolation formula. In which situations normally Lagrange's interpolation formula is used? Using this formula, prove that

$$u_1 = u_3 - 0.3(u_5 - u_{-3}) + 0.2(u_{-3} - u_{-5})$$

6+2+5=13

- 5. Answer any three of the following:
 - (a) Find the first two derivatives of f(x) at x = 1 from the following table:

x	-2	-1	0	1	2	3	4
f(x)	104	17	0	-1	8	69	272

- (b) What is numerical quadrature? State the general Gauss-Legendre quadrature formula for equidistant ordinates. Also derive trapezoidal rule using this quadrature formula. 1+1+5=7
- (c) Evaluate the approximate value of the integral

$$\int_0^1 \sqrt{8 + x + x^2} \, dx$$

using Simpson's one-third rule (correct to six decimals, using 11 ordinates).

- (d) Discuss the regula falsi method for solution of transcendental equations. Use the method to find the real root of the equation $x^6 x^4 x^3 1 = 0$ which lies between 1 and 2. 4+3=7
- (e) Describe Newton-Raphson method. In which situation this method is applicable? 5+2=7

7

7

(f) In what situation the bisection method is applicable? Describe the method and mention clearly how the percentage error is used to determine the iteration.

1+6=7
