3 SEM TDC PHY M 1

2019

(November)

PHYSICS

(Major)

Course: 301

(Optics)

Full Marks: 60
Pass Marks: 24/18

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct answer from the following:

1×6=6

- (a) The distance of the first focal point from the field lens in Huygens' eyepiece is
 - (i) $\frac{3f}{2}$
 - (ii) $\frac{2f}{3}$
 - (iii) $\frac{f}{2}$
 - (iv) $\frac{4f}{3}$

- (b) Spherical aberration of a lens may be minimized by designing the lens so that the deviation of rays is
 - (i) minimum
 - (ii) minimum at first surface
 - (iii) minimum at second surface
 - (iv) equal at both surfaces
- (c) In Young's double-slit experiment, when the separation between the slits is halved and the distance between the slits is doubled, then the fringe width is
 - (i) unchanged
 - (ii) halved
 - (iii) doubled
 - (iv) quadrupled
- (d) The intensity of principal maxima of grating having N slits is proportional to
 - (i) $\frac{1}{N}$
 - (ii) N
 - (iii) N²
 - (iv) \sqrt{N}

- (e) The dispersive power of a grating in diffraction is
 - (i) directly proportional to the order of the spectrum
 - (ii) inversely proportional to the order of the spectrum
 - (iii) directly proportional to the square root of the spectrum
 - (iv) inversely proportional to the square root of the spectrum
- (f) The Babinet's compensator may be used for production and analysis of
 - (i) linear polarized light
 - (ii) circular polarized light
 - (iii) elliptical polarized light
 - (iv) All of the above

- 2. Answer any six from the following: $2\times6=12$
 - (a) Explain briefly the defect astigmatism in a lens.
 - (b) Explain why a thick film shows no colour in white light.
 - (c) Newton's rings are formed by reflection of light of wavelength 600 nm. The diameter of 10th dark ring is 0.4 cm. Calculate the radius of curvature of the lens used.
 - (d) Why is the central fringe of Newton's rings arrangement dark?
 - (e) How can a plane polarized light be converted into circularly polarized light?
 - (f) Explain the phenomenon of double refraction in uniaxial crystals.
 - (g) What is meant by spherical aberration? What is its cause?

- 3. (a) Find the condition of achromatism of two thin lenses separated by a finite distance. Is such a combination perfectly achromatic? Explain. 2+1+1=4
 - (b) Give the construction and theory of Huygens' eyepiece and show that it is free from chromatic aberration. 2+2+1=5
 - (c) Describe Fresnel's biprism method for the determination of wavelength of light.

Or

An object is placed at 20 cm from a zone plate and the brighter image is situated at 20 cm from zone plate. The wavelength of light wave is $\lambda = 4000$ Å. Find the number of Fresnel's zones in a radius of 1 cm of the plate.

(d) Discuss the theory of Newton's rings formed by the reflected or transmitted light.

5

4

- 4. (a) What is Fraunhofer diffraction? Discuss the method of constructing the half-period zones on the screen in the case of diffraction at a circular aperture. 1+5=6
 - (b) Obtain an expression for the resolving power of a plane transmission grating.

Or

What is a plane diffraction grating? In a plane diffraction grating, the angle of diffraction for the 2nd order maximum for wavelength 5×10^{-7} cm is 30° . Calculate the number of lines/cm of the grating. If the total number of slits in the grating is N, what is the total number of secondary maxima and minima between any two principal maxima? 1+3+2=6

(c) If the distance between the rulings of a grating is made very large, what will be the effect observed?

2

- 5. (a) State and explain Malus' law. 1+2=3
 - (b) Write short notes on any two of the following: $3\frac{1}{2}\times2=7$
 - (i) Fresnel's half-period zones
 - (ii) Lloyd's mirror
 - (iii) Optic axis and the 'principal section' of a crystal
