3 SEM TDC PHY M 2

2019

(November)

PHYSICS

(Major)

Course: 302

(Electricity and Magnetism)

Full Marks: 60

Pass Marks: 24/18

Time: 3 hours

The figures in the margin indicate full marks for the questions

- Choose the correct option from the following (symbols have their usual meanings): 1×6=6
 - (a) If the amounts of elective flux entering and leaving an enclosed surface are ϕ_1 and ϕ_2 respectively, the electric charge inside the surface will be

(i)
$$\frac{\phi_1 + \phi_2}{\varepsilon_0}$$

(ii)
$$\frac{\phi_2 - \phi_1}{\varepsilon_0}$$

(iii)
$$(\phi_1 + \phi_2)\epsilon_0$$

(iv)
$$(\phi_2 - \phi_1)\epsilon_0$$

- (b) The susceptibility of an ideal diamagnetic substance is
 - (i) ∞
 - (ii) O
 - (iii) -1
 - (iv) +1
- (c) The curl of the gradient of a scalar function is
 - (i) zero
 - (ii) a scalar
 - (iii) a vector
 - (iv) undefined
- (d) The impedance of an L-C-R circuit will be minimum, if

(i)
$$X_L = 0$$

(ii)
$$X_L \neq X_C = 0$$

(iii)
$$X_L = X_C$$

(iv) None of the above

(e) In a parallel-plate condenser, the distance between the plates is d and its potential difference is V. The energy stored per unit volume of the capacitor is

(i)
$$\frac{1}{2}\varepsilon_0 V^2 d^2$$

(ii)
$$\frac{1}{2} \varepsilon_0 \frac{V^2}{d^2}$$

(iii)
$$\frac{1}{2} \frac{V^2}{\epsilon_0 d^2}$$

(iv)
$$\frac{1}{2} \varepsilon_0 \frac{V^2}{d}$$

(f) The power in an a.c. circuit containing resistance, inductance and capacitance is given by

(i)
$$\frac{E_0}{I_0}\cos\theta$$

(ii)
$$E_0 \times I_0 \cos \theta$$

(iii)
$$E_0 \times \frac{I_0}{\sqrt{2}} \cos \theta$$

(iv)
$$\frac{E_0}{\sqrt{2}} \times \frac{I_0}{\sqrt{2}} \cos \theta$$

2.	(a)	What do you mean by surface integral of
		a vector function?

(b) State Stokes' theorem in vector algebra.

$$\overrightarrow{\nabla} \cdot (\phi \overrightarrow{A}) = (\overrightarrow{\nabla} \phi) \cdot \overrightarrow{A} + \phi (\overrightarrow{\nabla} \cdot \overrightarrow{A})$$

- 3. (a) By using Gauss theorem in electrostatics, find the expressions for the field strength due to an infinite uniform plane sheet of charge.
 - (b) Define the polarizability of a dielectric material. Derive the Clausius-Mossotti equation connecting polarizability with the dielectric constant of the material.

1+4=5

1

1

3

3

(c) Deduce an expression for the capacity of two coaxial cylinders separated by a layer of dielectric constant k.

3

4. (a) By using Kirchhoff's laws, establish the balanced condition of the Wheatstone bridge.

2

(b) Discuss the theory underlying the working of the Kelvin's double bridge. What are the advantages of this bridge?

2+1=3

(c) The e.m.f. of a thermocouple of which one junction is at 0 °C and the other at 50 °C is 25 microvolts. The neutral temperature is 100 °C. Find the e.m.f. when the junctions are at 0 °C and 200 °C.

3

(d) What is the 'time constant' of the CR-circuit? Draw the charge decay curve and mark the time constant for such circuit.

2

5. (a) Find the magnetic field at any axial point due to a current-carrying solenoid.

4

(b) A long wire having a semi-circular loop of radius r carries a current i as shown in the figure below:

Find the magnetic induction at the centre O due to entire wire.

3

(c) What are diamagnetic, paramagnetic and ferromagnetic substances? Give examples of each of them.

4

6. (a) What do you mean by self-inductance and mutual inductance? Discuss a method for determining self-inductance of a coil.

2+4=6

(b) What do you mean by average e.m.f. and virtual e.m.f.? Establish a relation between them. 2+2=4

- (c) An alternating voltage of 100 volts is impressed on a series circuit having an inductance of 1 mH, a capacitance of 0·1 μF and a resistor of 50 ohms. Find—
 - (i) the resonance frequency;
 - (ii) the potential difference across the inductance;
 - (iii) the potential difference across inductor-capacitor combination at resonance. 2+2+3=7
