2015

(November)

PHYSICS

(Major)

Course: 302

(Electricity and Magnetism)

Full Marks: 60

Pass Marks: 24 (Backlog)/18 (2014 onwards)

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct option from the following: 1×6=6
 - (a) $\nabla \cdot \vec{D} = \rho$ is based on
 - (i) Ampere's law
 - (ii) Faraday's law
 - (iii) Ohm's law
 - (iv) Gauss' law

- (b) The unit of polarisation \overrightarrow{P} is
 - (i) same as that of \vec{E}
 - (ii) same as that of \overrightarrow{D}
 - (iii) same as that of \vec{E} /coulomb
 - (iv) same as that of charge
 - (c) Closed-circuit technique is based on
 - (i) Thevenin's theorem
 - (ii) Norton theorem
 - (iii) Kirchhoff's current law
 - (iv) Kirchhoff's voltage law
- (d) Which one is correct?

(i)
$$\vec{B} = \vec{H} + \vec{M}$$

(ii)
$$\overrightarrow{B} = \mu_0 (\overrightarrow{H} + \overrightarrow{M})$$

(iii)
$$\vec{B} = \vec{H} + \mu_0 \vec{M}$$

(iv) None of the above

(e) If an L-C-R circuit is to be oscillatory, then it should satisfy

$$(i) \quad \frac{1}{LC} < \frac{R^2}{4L^2}$$

(ii)
$$\frac{1}{4L^2} = \frac{R^2}{4L^2}$$

(iii)
$$\frac{1}{LC} > \frac{R^2}{4L^2}$$

(iv)
$$\frac{L}{C} = \frac{R^2}{4}$$

- (f) The mutual inductance between two coils is 5 henry. If in $\frac{1}{1000}$ second 3 ampere current of the primary coil is completely stopped, then the induced e.m.f. in the secondary coil is
 - (i) 15000 volt
 - (ii) 1500 volt
 - (iii) 150 volt
 - (iv) None of the above
- 2. (a) What are polar and non-polar molecules? Give examples. 1+1+½+½=3
 - (b) The e.m.f. equation of a copper-nickel couple in microvolt is $E = 16 \cdot 34t 0 \cdot 021t^2$, t is in °C. Calculate the thermoelectric power at 100 °C.

(c) A magnetic field of 20 e.m.u. produces a flux of 2400 e.m.u. in a bar of cross-section 0.2 sq. cm. Calculate the susceptibility and permeability of iron.

3

- (d) What is the difference between a step-up and a step-down transformer? What is the transformer ratio? Can a transformer step-up or step-down a d.c. voltage?

 1+1+1=3
- 3. (a) State and prove Gauss' divergence theorem. 2+7=9
 - (b) Define capacitance of a conductor. What is an electrical capacitor? Deduce an expression for the capacitance of a parallel-plate air capacitor. How will it be modified when the gap between the plates is filled with dielectric?

1+1+3+3=8

4. State and prove Kirchhoff's laws of distribution of currents in an electrical network.
1+1+2+2=6

Or

Prove that $dE = d\pi + (\sigma_A - \sigma_B) dT$, the symbols having usual meaning.

5. Define permeability and magnetic susceptibility. Show that $\mu = \mu_0(1 + \chi_m)$.

Or

What is a solenoid? Obtain an expression for the field on the axis of a solenoid. 1+6=7

6. (a) What is self-inductance? Show that the energy required to build up a current I in a circuit of self-inductance L is $\frac{1}{2}LI^2$.

1+5=6

(b) Define pure inductance. Show that the current in an inductive circuit lags behind the voltage by 90°. Plot the current, self-induced e.m.f. and voltage curve and construct the vector diagram for an inductive circuit. 1+3+1+1=6

Or

Deduce equation for current in a capacitive circuit. Plot the current and voltage curves for the capacitive circuit.

4+2=6
