1 SEM TDC PHY M 1

Phy-101

2019 Bof-101

(November) Z00-101

Stat-101

PHYSICS Geo-101

(Major) Math-101

Chery-101

Course: 101

arty - 6

(Mechanics and Properties of Matter)

Full Marks: 80

Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct option from the following: 1×8=8
 - (a) If a torque acting on a particle is zero, what is conserved?
 - (i) Angular momentum
 - (ii) Energy
 - (iii) Linear momentum
 - (iv) None of the above

	When	the	tempe	eratu	re	increases,	the
	angle of contact of a liquid						

(i) increases

M YET DOT MAKE I

- (ii) decreases
- (iii) remains same
- (iv) first increases and then decreases
- (c) In case of a linear harmonic oscillator, the potential energy versus displacement curve will have the form of a/an
 - (i) ellipse
 - (ii) parabola
 - (iii) circle
 - (iv) straight line
- (d) For a rigid body, the number of degrees of freedom is
 - (i) 1
 - (ii) 2
 - (iii) 3
 - (iv) 6

- (e) The theoretical limits of Poisson's ratio are
 - (i) 0.5 and 1
 - (ii) 0.5 and -1
 - (iii) 0.5 and -1
 - (iv) -0.5 and 1
- (f) The constraint of rigidity is
 - (i) conservative
 - (ii) scleronomic
 - (iii) holonomic
 - (iv) All of the above
- (g) Newton's law of motion is represented by a differential equation which is of
 - (i) first order and first degree
 - (ii) second order and first degree
 - (iii) second degree and first order
 - (iv) second order and second degree

- (h) The linear velocity of a body is
 - (i) same in both inertial and non-inertial frames of references
 - (ii) greater in inertial frame
 - (iii) less in inertial frame
 - (iv) always constant
- 2. (a) What are inertial and non-inertial frames? Show that the basic laws of physics are invariant under Galilean transformations. 2+3=5
 - (b) Show how a two-body problem can be reduced to a single-body problem. Explain the concept of reduced mass.

4+1=5

(c) Show that the angular momentum \vec{J} of a system of particles can be expressed in the form $\vec{J} = \vec{J}_{cm} + \vec{R} \times \vec{P}$, where

 \vec{J}_{cm} = angular momentum about the centre of mass

 \overrightarrow{R} = position vector of centre of mass

 \vec{P} = total linear momentum

4

(d) Show that the reduced mass of hydrogen atom is

$$m\left(1-\frac{1}{1836}\right)$$

where m is the mass of a proton.

3

3. (a) State Kepler's laws of planetary motion.

2

- (b) Derive the expression for gravitational potential at a point inside a solid sphere. What is the value of gravitational intensity at the centre of the sphere?

 4+1=5
- 4. (a) State and prove perpendicular axes theorem on moment of inertia. 1+2=3
 - (b) Calculate moment of inertia of a solid disc about an axis passing through its centre and perpendicular to its plane.

4

(c) Define surface tension. Obtain the relationship between surface tension and surface energy. 1+2=3

(d) Show that the excess pressure inside a curved surface is given by

$$P = T \left(\frac{1}{r_1} + \frac{1}{r_2} \right)$$

where the symbols have their usual meanings.

5

5

- (e) Derive the relation between the elastic constants.
- 5. (a) What are constraints? Distinguish between holonomic and non-holonomic constraints. 1+2=3
 - (b) What is d'Alembert's principle? Use this principle to derive Lagrange's equation of motion of a conservative system. 1+5=6
 - (c) What are fictitious forces? Show that the total Coriolis forces acting on a body of mass m in a rotating frame is $-2m\vec{\omega} \times \vec{v}$, where $\vec{\omega}$ is the angular velocity of rotating frame and \vec{v} is the velocity of the body in rotating frame.

2+5=7

(d) What is a Foucault pendulum? Using Foucault pendulum, show that the earth is rotating.

1+3=4

- **6.** Write short notes on any *two* of the following: $4\times2=8$
 - (a) Moment of inertia
 - (b) Lagrangian
 - (c) Capillarity
