1 SEM TDC PHY M 1

2015

(November)

PHYSICS

(Major)

Course: 101

(Mechanics and Properties of Matter)

Full Marks: 80

Pass Marks: 32 (Backlog)/24 (2014 onwards)

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct option from the following:

1×8=8

(a) Suppose that a reference frame fixed to the earth is exactly inertial. Which of the following is then an inertial frame?

A frame fixed to a motorcar which is

- (i) moving with a constant speed around a flat race track
- (ii) moving with a constant speed along a straight undulating road

(Turn Over)

- (iii) moving with a constant speed up a constant gradient
- (iv) freewheeling down a hill
- Two particles P_1 and P_2 with masses m_1 (b) and m_2 can move freely under their gravitation. Initially both particles are at rest and separated by a distance r. With what speed must P_1 be projected so as to escape from P_2 ?

(i)
$$v^2 \ge \frac{2(m_1 + m_2)G}{r}$$

projected so as to esc
(i)
$$v^2 \ge \frac{2(m_1 + m_2)G}{r}$$

(ii) $v^2 \le \frac{2(m_1 + m_2)G}{r}$
(iii) $v^2 \ge \frac{2Gm_1}{(m_1 + m_2)r}$

(iii)
$$v^2 \ge \frac{2Gm_1}{(m_1 + m_2)r}$$

(iv)
$$v^2 \ge \frac{2Gm_2}{(m_1 + m_2)r}$$

- The point of closest approach, in the (c) case of orbits around the sun, is called
 - (i) aphelion
 - (ii) perihelion
 - (iii) perigee
 - (iv) apogee

O

- (d) If a central force does not depend on time explicitly, then it is
 - (i) a dissipative force
 - (ii) a conservative force
 - (iii) a non-conservative force
 - (iv) None of the above
- (e) The excess pressure inside a soap bubble is

(i)
$$T\left(\frac{1}{r_1} + \frac{1}{r_2}\right)$$

(ii)
$$\frac{2T}{r}$$

(iii)
$$2T\left(\frac{1}{r_1} + \frac{1}{r_2}\right)$$

(iv)
$$\frac{4T}{r}$$

(f) The relation between the three elastic moduli is given by

(i)
$$\frac{9}{Y} = \frac{3}{B} + \frac{1}{n}$$

(ii)
$$\frac{9}{\eta} = \frac{3}{B} + \frac{1}{Y}$$

(iii)
$$\frac{9}{Y} = \frac{3}{n} + \frac{1}{B}$$

(iv)
$$\frac{9}{B} = \frac{3}{Y} + \frac{1}{n}$$

- (g) Constraint relations which are or can be made independent of velocities are known as
 - (i) scleronomic
 - (ii) rheonomic
 - (iii) holonomic
 - (iv) non-holonomic
- (h) The kinetic energy of any holonomic mechanical system has the form

(i)
$$T = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{jk}(q) \dot{q}_{j} \dot{q}_{k}$$

(ii)
$$T = \sum_{j=1}^{n} \sum_{k=1}^{n} a_{jk}(\dot{q}) \dot{q}_{j} \dot{q}_{k}$$

(iii)
$$T = \sum_{j=1}^{n} \sum_{k=1}^{n} a_{jk}(q) q_{j} \ddot{q}_{k}$$

- (iv) All of the above
- 2. (a) What are the fictitious forces that may arise in a rotating frame? Why are they called fictitious?
 - (b) Show that the law of conservation of linear momentum is invariant under Galilean transformation.

(c) Show that only radial dependence and

		implies that the total angular momentum of the system about the origin is conserved.	2
	(d)	A cat leaps off a table and lands on the floor. Show that, while the cat is in the air, its centre of mass moves on a parabolic path.	2
	(e)	Express the torque on a body in terms of its moment of inertia.	2
	(f)	What is the origin of elastic properties of solids?	2
	<i>(g)</i>	What are the generalized coordinates? Define degrees of freedom of a system. 1+1	=2
	(h)	Obtain an expression for the horizontal acceleration of an incline required to prevent the sliding of a block placed on the incline using the principle of virtual work.	2
3.	(a)	Show that purely internal forces, if they obey Newton's third law of motion, have no effect on the motion of the centre of mass.	4
	(b)	Show that falling objects on the earth are deflected in the horizontal direction. Obtain an expression for the deflection.	6

- (c) Derive an expression for reduced mass of a two-body system. What is the kinetic energy of an equivalent one-body system? 2+2=4
- (d) What are weak and strong laws of action and reaction? Discuss the motion of a system of particles in terms of the motion of the centre of mass.2+3=5

Or

Demonstrate the effect of the earth's rotation on a simple pendulum.

5

4. (a) In an experiment, particles of mass m and energy E are used to bombard stationary target particles of mass 2m. The expreimenters wish to select particles, that, after scattering, have energies E/3. At what scattering angle will they find such particles? In one collision, the scattering angle was measured to be 45°, what was the recoil angle?

Or

Obtain an expression for the gravitational potential at a point inside a spherical shell.

4

- Show that the height of a liquid rising in (b) a capillary tube is inversely proportional to the radius of the capillary tube. 5 What is the moment of inertia of a solid (c) sphere about a tangent? 5 (d) Obtain an expression for the strain energy in a twisted cylinder. 4 **5.** (a) What are generalized momenta holonomic mechanical system? Consider a system whose Lagrangian is given by $L = \frac{1}{2} M(\dot{x})^2 + \frac{1}{2} m(\dot{x}^2 + \dot{y}^2 + 2\dot{x}\dot{y}\cos\alpha) + mgy\sin\alpha$ Calculate the acceleration of the system. Using Lagrange's approach, obtain an (b) expression for the frequency of oscillation for a particle executing simple harmonic motion. 4 Show that d'Alembert's principle may be (c) used to derive the Lagrange's equations of motion when the forces are derivable
 - (d) Show that homogeneity of space leads to the conservation of linear momentum. (Use Lagrange's formulation of mechanics.)

from a scalar potential function.

6

3