6 SEM TDC MTH M 3

2018

(May)

MATHEMATICS

(Major)

Course: 603

[(A) Algebra—II and (B) Partial Differential Equations]

Full Marks: 80
Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

(A) Algebra—II

(Marks: 40)

- 1. (a) Write when an isomorphic mapping of a group becomes an automorphism.
 - (b) Define inner automorphism of a group.
 - (c) Show that $f: G \to G$ such that $f(x) = x^{-1}$ is an automorphism if and only if G is Abelian.

5

1

2

Or

Let T be an automorphism of G. Show that 0(Ta) = 0(a), $\forall a \in G$; and deduce that $0(bab^{-1}) = 0(a)$, $\forall a, b \in G$.

(d) Show that set I(G) of all inner automorphisms of G is a subgroup of aut (G).

Or

Let a group G is an internal direct product of its subgroups H and K. Show that H and K have only the identity in common.

- 2. (a) Write an example of a commutative ring with unity.
 - (b) Define a field.
 - (c) Show that a field has no proper ideals. 3
 - (d) Show that a field is an integral domain.

Or

Show that the intersection of two subrings is a subring.

- (e) Prove that the set of integers is an integral domain with respect to addition and multiplication.
- 3. (a) Define prime ideal.

(b) If R/S is a ring of residue classes of S in R, show that R/S is commutative if R is commutative.

8P/613

(Continued)

5

1

2

3

4

....

4

1

4

(c) Let f: R → R' be an onto homomorphism, where R is a ring with unity. Show that f(1) is unity of R'.

4

(d) Let R be a commutative ring. Show that an ideal P of R is prime if and only if R/P is an integral domain.

5

Or

Let R be a commutative ring with unity. Show that an ideal M of R is maximal ideal of R if and only if R / M is a field.

(B) Partial Differential Equations

(Marks: 40)

4. (a) Write the order of the partial differential equation

$$\frac{\partial^2 z}{\partial x^2} + \left(\frac{\partial z}{\partial y}\right)^4 = 0$$

1

(b) Write Lagrange's auxiliary equations for the equation 2(p+q) = z.

2

(c) Solve:

 $\frac{dx}{y^2} = \frac{dy}{x^2} = \frac{dz}{x^2 y^2 z^2}$

(d) Solve (any two):

 $3 \times 2 = 6$

(i)
$$xp + yq = z$$

(ii)
$$y^2 p + x^2 q = x^2 y^2 z^2$$

(iii)
$$(x^2 - y^2 - z^2)p + 2xyq = 2xz$$

(Turn Over)

	(e)	Solve/Answer (any two): 5×2	=10
		(i) $(1+y)p+(1+x)q=z$	
		(ii) $(y+z)p+(z+x)q = x+y$	
		(iii) Find the equation of the surface satisfying $4yzp+q+2y=0$ and passing through $y^2+z^2+1=0$, $x+z=2$.	
5.	(a)	Let $f(x_i) = 0$ be a partial differential equation having n independent variables. Then write the number of constants that appear in the solution.	1
	(b)	Define particular integral of $f(x, y, z, p, q) = 0$.	1
	(c)	Write when two first-order partial differential equations are compatible.	2
	(d)	Show that the equations $xp = yq$ and $z(xp + yq) = 2xy$ are compatible.	6
		Or	
		Find a complete integral of $px + qy = pq$.	
	(e)	Find the complete integral of $P_1^3 + P_2^2 + P_3 = 1$ using Jacobi's method.	5
	(f)	Find the complete integral of (any one):	5
	14	(i) $(p^2 + q^2)x = pz$	J
		(ii) $px + qy + pq = 0$	
		of Court and a	