### 6 SEM TDC MTH M 1

2017

(May)

### **MATHEMATICS**

( Major )

Course: 601

# ( A : Metric Spaces and B : Statistics )

Full Marks: 80
Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

# A : Metric Spaces

( Marks : 40 )

1. (a) The metric defined by

$$d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

is called \_\_\_\_\_.

(Fill in the blank) 1

(b) For a metric space (X, d), prove that the whole space X is an open set.

(Turn Over)

|      | (c)   | For a metric space $(X, d)$ , prove that                              |      |
|------|-------|-----------------------------------------------------------------------|------|
|      |       | $d(x, y) \ge  d(x, z) - d(z, y) $                                     |      |
|      |       | for all $x, y, z \in X$                                               | 3    |
|      |       |                                                                       |      |
|      |       |                                                                       |      |
| 2.   | (a)   | Prove that each open sphere in a metric                               |      |
|      |       | space X is an open set.                                               | 4    |
|      |       | Or                                                                    |      |
|      |       | Prove that arbitrary intersection of                                  |      |
|      |       | closed sets in a metric space X is closed.                            |      |
|      |       |                                                                       |      |
|      | (b)   |                                                                       |      |
|      |       | space (X, d), prove that                                              | -100 |
|      |       | $\partial A = \partial (X - A)$ , where $A \subset X$ 1+4             | 1=5  |
|      |       | Or                                                                    |      |
|      |       | Define first countable space in a metric                              |      |
|      |       | space (X, d). Prove that every metric                                 |      |
|      |       | space $(X, d)$ is a first countable space.                            | 5    |
|      |       |                                                                       |      |
|      |       |                                                                       |      |
| 3.   | (a)   | Define a Cauchy sequence.                                             | 1    |
|      | (b)   | Prove that in a matric and the                                        |      |
|      | (0)   | Prove that in a metric space X, every convergent sequence is bounded. |      |
|      |       | convergent sequence is bounded.                                       | 3    |
|      | (c)   | Prove that the usual metric space $(R, d)$                            |      |
|      | yr+13 | with $d(x, y) =  x - y , \forall x, y \in R$ is a                     |      |
|      |       | complete metric space.                                                | 4    |
| P7/5 | 55    |                                                                       |      |
| 11/0 | 33    | ( Continue                                                            | d)   |

Or

Let (X, d) be a complete metric space and let  $\{F_n\}$  be a decreasing sequence of non-empty closed subsets of X such that  $d(F_n) \to 0$ . Then show that the intersection

 $\bigcap_{n=1}^{\infty} F_n$ 

contains exactly one point.

(d) For a metric space (X, d), let  $Y \subset X$ . Then show that if Y is separable and  $\overline{Y}$  (closure of Y) = X, then X is separable.

Or

Let  $\{x_n\}$  be a Cauchy sequence in a metric space (X, d). Prove that  $\{x_n\}$  is convergent if and only if it has a convergent subsequence.

- **4.** (a) Define a continuous function in a metric space (X, d).
  - (b) Let (R, d) be a usual metric with d(x, y) = |x y|,  $\forall x, y \in R$ . Define  $f: R \to R$  by  $f(x) = x^2$ . Then show that f is not uniformly continuous.

3

1

(c) Let (X, d),  $(Y, \rho)$  and  $(Z, \sigma)$  be metric spaces. If  $f: X \to Y$  and  $g: Y \to Z$  are homeomorphism, then show that  $g \circ f: X \to Z$  is also a homeomorphism.

Or View and Or

Let (X, d) and  $(Y, \rho)$  be metric spaces and  $f: X \to Y$  be a function. Then prove that f is continuous if and only if  $f^{-1}(F)$ is closed in X whenever F is closed in Y.

- **5.** (a) Define sequentially compact metric space.
  - (b) For a compact metric space (X, d), show that closed subset Y of X is compact.

Or

Let (X, d) be a metric space and A be a compact subset of X, B be a closed subset of X such that  $A \cap B = \emptyset$ , then show that d(A, B) > 0.

4

1

#### B: Statistics

( Marks: 40 )

**6.** (a) Write one limitation of classical probability.

1

(b) What is the chance that a leap year selected at random will contain 53 Mondays?

2

(c) A problem in statistics is given to three students X, Y and Z whose chances of solving it are  $\frac{1}{2}$ ,  $\frac{3}{4}$  and  $\frac{1}{4}$  respectively. What is the probability that the problem will be solved if all of them try independently?

3

(d) If  $E_1, E_2, E_3, ..., E_n$  are mutually disjoint events with  $P(E_i) \neq 0$  (i = 1, 2, ..., n), then for any arbitrary event A which is a subset of  $\bigcup_{i=1}^{n} E_i$  such that P(A) > 0, prove

that

$$P(E_i|A) = \frac{P(E_i)P(A/E_i)}{\sum_{i=1}^{n} P(E_i)P(A/E_i)}$$

( Turn Over )



Or

The chances that doctor X will diagnose a disease A correctly is 60%. The chances that a patient will die by his treatment after correct diagnosis is 40% and the chance of death by wrong diagnosis is 70%. A patient of doctor X, who had disease A, died. What is the chance that his disease was diagnosed correctly?

7. (a) If n = 10,  $\bar{x} = 12$ ,  $\sum x^2 = 1530$ , find the coefficient of variation.

2

(b) Find the standard deviation of the frequency distribution given below:

3

| Class Interval | 60-62 | 63-65 | 66-68 | 69-71 | 72-74 |  |
|----------------|-------|-------|-------|-------|-------|--|
| Frequency      | 5     | 18    | 42    | 27    | 8     |  |

# 8. (a) Can

40X - 18Y = 214 and 8X - 10Y + 66 = 0

be the estimated regression equations of Y on X and X on Y respectively? Explain your answer with suitable arguments.

(b) A sample of 12 fathers and their eldest sons gave the following data about their height in inches:

| Father | 65 | 63 | 67 | 64 | 68 | 62 | 70 | 66 | 68 | 67 | 69 | 71 |
|--------|----|----|----|----|----|----|----|----|----|----|----|----|
| Son    | 68 | 66 | 68 | 65 | 69 | 66 | 68 | 65 | 71 | 67 | 68 | 70 |

Calculate coefficient of rank correlation. 4

- 9. (a) Write the physical conditions of binomial distribution.
  - (b) In a binomial distribution consisting of 5 independent trials, probabilities of 1 and 2 successes are 0.4096 and 0.2048 respectively. Find the parameter p of the distribution.
  - (c) For a Poisson distributed variable X, show that mean of X = variance of X = r, where r is a parameter of Poisson distribution.
  - (d) Discuss about the chief characteristics of normal distribution and normal probability curve.

Or

Show that Poisson distribution is a limiting form of binomial distribution.

1

4

10. (a) Find the 3-yearly weighted moving average with weights 1, 4, 1 for the following series:

2

| Year   | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|--------|---|---|---|---|---|---|---|
| Values | 2 | 6 | 1 | 5 | 3 | 7 | 2 |

(b) The figures of annual production (in thousand tonnes) of a sugar factory are given below:

| Year       | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
|------------|------|------|------|------|------|------|------|
| Production | 70   | 75   | 90   | 91   | 95   | 98   | 100  |

Fit a straight line trend by the method of least square.

4



the Allege of the Allege Control of the Allege of the Alle