6 SEM TDC MTH M 4 (A/B)

2017

(May)

MATHEMATICS

(Major)

Course: 604

Full Marks: 80
Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP—A

- (a) Financial Mathematics
- (b) Operations Research
 - (a) Financial Mathematics

(Marks : 45)

- (a) Define demand function and supply function.
 - (b) The supply and demand functions for a commodity are

$$q^{S}(p) = 12p - 4, q^{D}(p) = 8 - 4p$$

If an excise tax of *T* is imposed, then what are the selling price and quantity sold, in equilibrium?

3

2

(Turn Over)

2. Describe the Cobweb model.

5

Or

Consider a market in which the supply and demand sets are

$$S = \{(q, p) \mid q = 3p - 7\}$$

$$D = \{(q, p) \mid q = 38 - 12p\}$$

Write down the recurrence equations which determine the sequence p_t of price, assuming that the suppliers operate according to the Cobweb model. Find the explicit solution given that $p_0 = 4$ and describe in words how the sequence p_t behaves. Write down a formula for q_t , the quantity on the market in the year t.

- 3. (a) Suppose the cost function is C(q) = 9 + 5q and the price function is P(q) = 6 0.01q. Then write the profit function $\pi(q)$.
 - (b) The supply set S consists of pairs (q, p) such that 2q-5p=14 and a demand set D consists of pairs (q, p) such that 3q+p=72. An excise tax T per unit is imposed. Determine when the revenue will be maximum
- 4. (a) Define elasticity of demand.

3

4

5

1

(b) State the difference between competition and monopoly.

(c) Consider an efficient small firm with the cost function

$$C(q) = q^3 - 10q^2 + 100q + 196$$

that can produce maximum of 10 units per week. Determine their—

- (i) fixed cost;
- (ii) profit function;
- (iii) startup point;
- (iv) breakeven point;
- (v) supply set.

5. (a) Define saddle point.

- (b) If $f(x, y) = x^3 y^3 2xy + 1$, then find and classify the critical points of f. 5
- (c) Find the maximum value of the function

$$f(x, y) = 6 + 4x - 3x^2 + 4y + 2xy - 3y^2$$

- 6. (a) Define a technology matrix. 2
 - (b) The supply function for a good is

$$q^S(p) = ap^3 + bp^2 + c$$

for some constants a, b, c. When p=1, the quantity supplied is 1, when p=2, the quantity supplied is 11, when p=3, the quantity supplied is 35. Find the constants a, b, c.

4

(c) The matrix of return for an investor is

$$R = \begin{pmatrix} 1.05 & 0.95 \\ 1.05 & 1.05 \\ 1.37 & 1.42 \end{pmatrix}$$

Show that the portfolio $Y = (500 \ 10000 \ 1000)$ is riskless. What return is the investor guaranteed?

(b) Operations Research

(Marks : 35)

- 7. (a) State True or False:

 Operations research practioners can predict about the future events.
 - (b) What is OR? Write a short note on application of OR. 1+3=4

Or

Write a short note on the limitations of operations research.

- 8. (a) Define assignment problem.
 - (b) Explain the difference between a transportation problem and an assignment problem.

P7/558

(Continued)

4

(c) Consider the problem of assigning five operators to five machines. The assignment costs are given below:

Operators

		I	1	Ш	IV	V			
Machines	A	10	5	13	.15	16			
	В	3	9	18	3	6			
	C	10	7	2	2	2			
	D	5	11	9	7	12			
	E	7	9	10	4	12			

Assign the operators to different machines so that total cost is minimized.

- 9. (a) Explain the concept of dynamic programming and the relation between dynamic and linear programming approaches.
 - (b) Use dynamic programming to solve the following linear programming problem:

Maximize
$$Z = 3x_1 + 5x_2$$

subject to

$$x_1 \le 4$$

 $x_2 \le 6$
 $3x_1 + 2x_2 \le 18$
and $x_1, x_2 \ge 0$

7

3

Or

Solve the following LPP by the method of dynamic programming:

Maximize $Z = 2x_1 + 5x_2$ subject to

> $2x_1 + x_2 \le 430$ $2x_2 \le 460$ and $x_1, x_2 \ge 0$

10. (a) Fill in the blank:

programming is an extension of the linear programming in which feasible solution must have integer value.

(b) Explain the basic difference between a pure and mixed integer programming problems.

(c) Solve the following all integer programming problem using Gomory's cutting plane method:

Maximize $Z = x_1 + 2x_2$ subject to

 $2x_{2} \le 7$ $x_{1} + x_{2} \le 7$ $2x_{1} \le 11$

and $x_1, x_2 \ge 0$ and integers.

7

1

2

Or

Use Gomory's cutting plane method to solve the following problem:

7

Maximize $Z = x_1 - x_2$

subject to

 $x_1 + 2x_2 \le 4$ $6x_1 + 2x_2 \le 9$ $x_1, x_2 \ge 0$

and are integers.

GROUP-B

(a) Space Dynamics

(b) Relativity

(a) Space Dynamics

(Marks: 40)

1. (a) Define spherical angle.

1

1

(b) Fill in the blank:
Number of great circle through two given points is _____, if the two points are not the extremities of a diameter.

(c) Show that the sum of the three angles of a spherical triangle is greater than two right angles but less than six right angles.

2

(Turn Over)

	(a)	Prove the sine-cosine formula:	4				
	S	$\sin b \cos C = \sin a \cos c - \cos a \sin c \cos B$					
	(e) In a spherical triangle ABC, if θ, φ, ψ the arcs bisecting the angles A, B, respectively and terminated by oppositions, show that						
		$\cot\theta\cos\frac{A}{2} + \cot\phi\cos\frac{B}{2} + \cot\psi\cos\frac{C}{2} =$					
		$\cot a + \cot b + \cot c$	5				
		Or					
	In a spherical triangle ABC, prove that						
	sin sin 2	$\frac{a + \sin^{2} b + \sin^{2} c}{2A + \sin^{2} B + \sin^{2} C} = \frac{1 - \cos a \cos b \cos c}{1 + \cos A \cos B \cos C}$	5				
2.	(a)	What is astronomical latitude?	1				
	(b)	Define celestial equator and observer's meridian.	l=2				
	(c)	What is the RA of the Sun when it is on the summer solstice?					
	(d)		2=4				
	(e)	Discuss the ecliptical coordinate system.	4				
27/	558	(Continu					

Or

If (α, δ) and (λ, β) are respectively the equatorial and ecliptic coordinates of a star, then prove that

 $\sin \beta = \cos \epsilon \sin \delta - \sin \epsilon \cos \delta \sin \alpha$ and $\tan \lambda = \frac{\sin \epsilon \tan \delta + \cos \epsilon \sin \alpha}{\cos \alpha}$

where ε is the obliquity of the ecliptic.

(f) If H be the hour angle of a star of declination δ when its azimuth is A and H' when azimuth is $180^{\circ}+A$, then prove that

$$\tan \phi = \tan \delta \frac{\cos \left(\frac{H' + H}{2}\right)}{\cos \left(\frac{H' - H}{2}\right)}$$

where ϕ is the latitude of the star.

3. (a) Define mean anomaly.

(b) In one-body problem, deduce the equation $r = \frac{a(1-e^2)}{1+e\cos\omega}$, where a is semimajor axis, e is the eccentricity, ω is the true anomaly of the moving particle at any position (r, θ) .

Or

Derive an expression for the position of a body in an elliptic orbit.

(Turn Over)

4

5

1

5

(c) Establish the relation

$$\tan\frac{v}{2} = \sqrt{\frac{1+e}{1-e}} \tan\frac{E}{2}$$

where v is true anomaly and E is eccentric anomaly.

Or

Deduce the Kepler's equation

$$M = E - e \sin E = n(t - \tau)$$

(b) Relativity

(Marks: 40)

- 4. (a) State True or False:

 It is possible to send out signals with a velocity greater than the velocity of light.
 - (b) Choose the correct answer:
 Frame S' is moving with velocity v along x-axis relative to a stationary frame S with length l along x-axis. The length as observed in frame S' is

(i)
$$\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}$$
 (ii) $l\sqrt{1-\frac{v^2}{c^2}}$

(iii) 1 (iv) $\frac{1}{v}$

(c) State two postulates of special theory of relativity.

4

4

1

(d) Write short note on any one of the following:

4

6

- (i) Clock paradox
- (ii) Length contraction
- 5. Show that the inverse of a Lorentz transformation is also a Lorentz transformation.

Or

If u and v are two velocities in the same direction and V their resultant velocity given by

$$\tanh^{-1}\frac{V}{c} = \tanh^{-1}\frac{u}{c} + \tanh^{-1}\frac{v}{c}$$

then deduce the law of composition of velocities from this equation.

6

- 6. Answer any two of the following: 3×2=6
 - (a) A particle with a mean proper life 1 μ sec moves through the laboratory at 2·7×10¹⁰ cm/sec. What will be its life as measured by an observer in the laboratory?
 - (b) A rod of length 1 m, when the rod is in a satellite moving with velocity 0.8c relative to laboratory, what is the length of the rod as determined by an observer (i) in the satellite and (ii) in the laboratory?
 - (c) Why is the velocity of light called fundamental velocity?

(Turn Over)

7. (a) Choose the correct answer: The relation between momentum and energy is

(i)
$$E^2 = p^2c^2 + m_0^2c^2$$

(ii)
$$E^2 = p^2c^2 - m_0^2c^4$$

(iii)
$$E^2 = p^2c^2 + m_0^2c^4$$

(iv)
$$E^2 = p^2c^2 - m_0^2c^2$$

- (b) What is space-like interval?
- (c) Show that the rest mass of a particle of momentum P and kinetic energy K is

$$m_0 = \frac{P^2 c^2 - K^2}{2Kc^2}$$
 3

1

3

3

reganior and mark gerionies, Calculate the velocity at which the mass of a particle becomes 8 times its rest mass.

- (d) How much electric energy theoretically be obtained by annihilation of 1 g of matter?
- 8. Answer any two of the following:
 - Establish the Einstein mass-energy (a) relation $E = mc^2$.
 - Find the transformation laws of density (b) in relativistic mechanics.
 - Calculate the rest mass of a particle (c) whose momentum is 130/c MeV, when its kinetic energy is 50 MeV.

* * *