6 SEM TDC MTH M 2

2014

(May)

MATHEMATICS

(Major)

Course: 602

(Discrete Mathematics and Graph Theory)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

(A) DISCRETE MATHEMATICS

(Marks: 45)

- 1. Answer the following questions: $1 \times 5 = 5$
 - (a) What is the general solution of a recurrence relation if 4, 4 are the roots of the corresponding characteristic equation?
 - (b) Lattice is called as an algebraic system. Why?

- (c) Give an example of a poset which has no maximal element.
- (d) Under what condition a lattice is said to be complete?
- (e) Find the dual of the Boolean function f = x(y'z' + uz)

2. Answer the following questions:

2×3=6

(a) What do you mean by initial condition for a recurrence relation? Solve the recurrence relation

$$a_n - da_{n-1} = 0$$
, $a_0 = 4$

- (b) Let (L, \leq) be a lattice. Then show that $a \leq b \Leftrightarrow a \wedge b = a \Leftrightarrow a \vee b = b$; $a, b \in L$
- (c) Let $L_1 = \{2,3,4,9,36\}$, $L_2 = \{1,2,3,4,9,36\}$ and $L_3 = \{1,2,3,6\}$. Examine whether L_1 , L_2 , L_3 are sublattices of

$$L = \{(1, 2, 3, 4, 6, 9, 36), \};$$

being the divisibility relation.

3. Answer any two of the following questions:

3×2=6

(a) Show that the complement of an element a in a Boolean algebra B is unique.

- (b) Draw switching circuits for the function f = a(bc + d(e + f))
- (c) Express Boolean function f = x + y'z in a sum of minterms.
- 4. Answer any two of the following questions:

5×2=10

(a) Define generating function. If

$$A_{2\times 2} = \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix}$$

evaluate A^n using recurrence relation. Also find A^{30} .

- (b) For $a, b \in Z^+$, the set of positive integers, show that lcm(a, gcd(a, b)) = a and gcd(a, lcm(a, b) = a.
- (c) Define lattice isomorphism. Let L_1 be the lattice D_6 (divisor of 6) and L_2 be the lattice $(P(s), \subseteq)$ such that $s = \{a, b\}$. Show that L_1 and L_2 are isomorphic.
- 5. Answer any three of the following questions:

6×3=18

- (a) Find the total solution of the recurrence relation $a_n 5a_{n-1} + 6a_{n-2} = 2^n + 3n$; $a_0 = 1$, $a_1 = 6$.
- (b) Show that $(D_m, 1)$ is a distributive lattice.

(c) If $X = \{a, b, c\}$ and $f : h(X) \rightarrow B_2$ (B_2 is a Boolean algebra with 2 elements) is defined by

$$f(a) = \begin{cases} 0 & ; & \alpha \notin A \\ 1 & ; & \alpha \in A \end{cases}$$

show that f is homomorphism from h(X) to B_2 .

(d) A logic circuit is represented by the Boolean function

$$f = (a+b'+d)(a+b+c')(a+c+d)$$

Simplify the circuit and represent it.

(B) GRAPH THEORY

(Marks : 35)

- **6.** Answer the following questions: $1 \times 3 = 3$
 - (a) What do you mean by a simple graph?
 - (b) Does there exist a 4-regular graph on 5 vertices?
 - (c) Define adjacency matrix with example.
- **7.** Answer the following questions: $2 \times 2 = 4$
 - (a) Show that the maximum number of edges in a simple graph with n vertices is

$$\frac{1}{2}n(n-1)$$

(b) Find the vertex sets of components and cut vertices of the following graphs:

8. Answer any two of the following questions:

5×2=10

- (a) Find the number of edges in a complete bipartite graph of *n* vertices.
- (b) Prove that if a graph has exactly two vertices of odd degree, there must be a path joining these two vertices.
- (c) Show that a graph which is Hamiltonian may not be Eulerian and vice-versa.
- 9. Answer any three of the following questions:

6×3=18

- (a) Show that a simple graph G with n vertices $(n \ge 2)$ has a Hamiltonian circuit if $d(u) + d(v) \ge n$ for all non-adjacent vertices u, v in G.
- (b) If the intersection of two paths in a graph G is a disconnected graph, show that the union of the two paths has at least one circuit.

=5

(c) Define linked representation of a graph.
Find a linked representation for the graph

(d) Show that a simple connected graph with n vertices and m edges is Hamiltonian if

$$m \ge \frac{1}{2}(n-1)(n-2)+2$$

