6 SEM TDC MTH M 3

2014

(May)

MATHEMATICS

(Major)

Course: 603

(Algebra II and Partial Differential Equation)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

A : Algebra II

(Marks: 40)

- 1. (a) Let G be a group and the identity map $I: G \to G$, such that I(x) = x. Write the name of this automorphism.
 - (b) Define inner automorphism.

(c) Let $f: G \to G$ such that $f(x) = x^n$ is an automorphism, where n is some fixed integer. Show that $a^{n-1} \in Z(G)$, for all $a \in G$.

3

1

3

14P-2000/1168

(Turn Over)

(d)	Prove that the set $I(G)$ of all inner automorphisms of G is a subgroup of Aut G , where Aut G is the set of all automorphisms of G . Or Let G be an infinite cyclic group. Determine Aut G , where Aut G is the set of all automorphisms of G .	6
(a)	Set of all even integers forms a	
	commutative ring under addition and	
	multiplication without unity. Write true or false.	1
(b)	Write the condition when a ring R is a	1
(0)	commutative ring.	1
(c)	In a ring R, show that	
	$a(b-c) = ab-ac, \forall a, b, c \in R$	2
(d)	Prove that a field is an integral domain.	4
	Or	
	If A is an ideal of a ring R with unity such that $1 \in A$, then show that $A = R$.	
(e)	Prove that, if A and B are two ideals of R , then $A+B$ is an ideal of R ,	
	containing both A and B.	5
	Or	
	Prove that the product AB of any two ideals A and B of a ring R is an ideal of R .	

2.

- 3. (a) If R is a ring, I is an ideal and I = R, then to which type of ring R/I is isomorphic?
 - (b) Let $f: R \to R'$. Then define kernel of f. 2
 - (c) Define maximal ideal of a ring. 2
 - (d) If f: R→R' is a homomorphism, then show that f(0) = 0' and f(-a) = -f(a).
 4
 Or
 Let R be a commutative ring with unity. Show that every maximal ideal of R is prime.
 - (e) Let A, B be two ideals of a ring R, then show that

$$\frac{A+B}{A} \cong \frac{B}{A \cap B}$$

Let R be a commutative ring. An ideal P of R is prime if and only if $\frac{R}{P}$ is an integral domain. Prove it.

B: Partial Differential Equation

(Marks: 40)

4. (a) Write the order of the partial differential equation

$$y\left(\frac{\partial z}{\partial x}\right)^2 + \frac{\partial^3 z}{\partial y^3} = z$$

(b) Form the partial differential equation by eliminating arbitrary constants m and n from the relation

$$z = m(x+y) + n 2$$

(c) Show that the curves represented by

$$\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$$

lie completely on the surface $z = \phi(x, y)$ whose differential is Pp + Qq = R.

(d) Solve any one of the following equations by Lagrange's method:

(i)
$$y^2 p - xyq = x(z-2y)$$

(ii)
$$yzp + 2xq = xy$$

(e) Solve any one of the following:

(i)
$$xp - yq = xy$$

(ii)
$$(y-zx)p+(x+yz)q=x^2+y^2$$

14P-2000/1108

(Continued)

3

4

5

Find the equation of surface satisfying (f) 4yzp+q+2y=0 and passing through $y^2 + z^2 = 1$ and x + z = 2.

5

Solve p+q=x+y+z

5. (a) Charpit's equations give p = a and q = bfor the equation $z = px + qy + p^2 + q^2$. Write the complete integral.

1

1

Write the general form of the complete (b) integral of the equation f(p, q) = 0.

2

- Write the Charpit's auxiliary equations (c) for the equation px + qy = pq.
- For the arbitrary constants a and b, (d) z = ax + by + ab is the complete integral of the equation z = px + qy + pq. Obtain the singular integral of the equation.

- Find complete integral of any two (e) equations of the following: 5×2=10
 - (i) $q = (z + px)^2$
 - (ii) $yzp^2 = q$
 - (iii) $q = px + p^2$
 - (iv) pxy + pq + qy = yz

(f) Solve any *one* of the following equations by Jacobi's method:

4

(i) $p^2 + q^2 = k^2$

1

(ii) xz = pq
