6 SEM TDC PHY M 3

2019

(May)

PHYSICS

(Major)

Course: 603

(Nuclear Physics)

Full Marks: 60
Pass Marks: 24/18

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following (any *five*): 1×5=5
 - (a) Packing fraction
 - (i) is always positive
 - (ii) is always negative
 - (iii) is zero
 - (iv) may be zero or positive or negative

(b)	In the process of fission, the binding
	energy per nucleon

- (i) increases
- (ii) decreases
- (iii) remains constant
- (iv) increases for mass number A < 56 but decreases for A > 56 nuclei
- (c) The mass defect in the nucleus of helium is 0.03030 a.m.u. What is the binding energy per nucleon for helium in MeV?
 - (i) 28
 - (ii) 7
 - (iii) 4
 - (iv) 1

- (d) Consider the decay, $\mu^- \rightarrow e^- + \overline{\nu}$. This decay is forbidden because of law of conservation of
 - (i) energy and momentum
 - (ii) baryon number
 - (iii) angular momentum
 - (iv) lepton number
- (e) In the nuclear reaction given by ${}_{2}\mathrm{He}^{4}+{}_{7}\mathrm{N}^{14} \to \mathrm{X}+{}_{1}\mathrm{H}^{1}$ the nucleus X is
 - (i) 8 N¹⁶
 - (ii) ₈N¹⁷
 - (iii) ₈O¹⁶
 - (iv) 8017

- (f) The quark composition of proton particle is
 - (i) uud
 - (ii) ddu
 - (iii) ud
 - (iv) udd
- 2. Answer any five of the following: 2×5=10
 - (a) The binding energy per nucleon for C¹² is 7.68 MeV and that of C¹³ is 7.47 MeV. Calculate the energy required to remove a neutron from C¹³.
 - (b) Explain the concept of parity of nuclear physics.
 - (c) How will you explain the stability of nucleus on the basis of different forces associated to it?
 - (d) Write two characteristic features of nuclear force which distinguish it from Coulomb force.

- (e) Discuss the limitations of a cyclotron.
- (f) Distinguish between primary and secondary cosmic rays.
- 3. (a) Which is the correct composition of nucleus from electron-proton and neutron-proton? Justify your answer. 1+4=5
 - (b) What is meant by nuclear magnetic moment? Derive an expression for it.

 1+3=4

Or

Calculate the binding energy and packing fraction for helium. The atomic masses of proton, neutron and helium are 1.00814 u, 1.00898 u, 4.00387 u and 1u = 931 MeV.

- **4.** Explain the various terms in the semiempirical mass formula.
- **5.** (a) State the principle of linear accelerator. Describe its construction and working. 1+5=6

4

4

Or

Deuterons in a cyclotron describe a circle of radius 0.32 m just before emerging from the dees. The a.c. voltage applied to the dees is 2×10^4 volt at 10 MHz. Find—

- (i) the velocity of deuterons;
- (ii) the magnetic field;
- (iii) the energy of deuterons in MeV.
- (b) Define the threshold energy of a nuclear reaction. Derive an expression for the Q-value for a reaction. 2+3=5

Or

Discuss the important cycles for production of energy in stars.

(c) Calculate the binding energy per nucleon of ₂₈Ni⁶⁴ = 63 · 9280 amu.

Mass of hydrogen atom

 $(M_{\rm H}) = 1.007825 \, \text{amu}$

5

Mas of neutron

 $(M_n) = 1.008665 \, \text{amu}$

Mass of electron

 $(M_e) = 0.00055 \,\mathrm{amu}$ 5

- 6. What are elementary particles? How are the elementary particles classified on the basis of their spin and interaction? 2+5=7
- **7.** Write short notes on any *three* of the following: 3×3=9
 - (a) Nuclear disintegration energy
 - (b) Induced radioactivity
 - (c) Shell model of nucleus
 - (d) Bosons

* * *