6 SEM TDC PHY M 1

phy = 601, 602, 603, 604

2017 600 = 601, 603, 604, 606

(May) Pot=601, 603, 604, 606

PHYSICS Math = 602, 603

(Major) State 601, 603

Course: 601 Che = 601, 603

609, 607

(Statistical Mechanics)

Full Marks: 60
Pass Marks: 24/18

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct option (any five): $1 \times 5 = 5$
 - (a) The statistical condition of equilibrium of two systems in thermal contact is

(i)
$$T_1 = T_2$$

(ii)
$$S_1 = S_2$$

(iii)
$$\Omega_1 = \Omega_2$$

(iv)
$$\frac{\partial}{\partial E_1} \log \Omega_1(E_1) = \frac{\partial}{\partial E_2} \log \Omega_2(E_2)$$

- (b) The relative probability between two different energy states having difference 1·1×10⁻²⁰ joules at 40 K temperature is
 - (i) e^{-1}

(ii) e^{-2}

(iii) e

- (iv) e^2
- (c) If Z_1 , Z_2 , Z_3 are independent partition functions of a system, the total partition function of the combined system is
 - (i) $Z = Z_1 + Z_2 + Z_3$
 - (ii) $Z = Z_1 \cdot Z_2 \cdot Z_3$
 - (iii) $\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3}$
 - (iv) None of the above
- (d) In Bose-Einstein statistics, the number of particles condensing into ground state is
 - (i) zero
 - (ii) all
 - (iii) $\eta \left[1 \left(\frac{T}{T_0} \right)^{3/2} \right]$
 - (iv) $\eta \left[1 \left(\frac{T}{T_0}\right)^{1/2}\right]$

	(e)	The Fermi function $f(\varepsilon) = \frac{n(\varepsilon)}{g(\varepsilon)}$ has value		
		½, when		
		(i) $\varepsilon < \varepsilon_f$		
		(ii) $\varepsilon > \varepsilon_f$		
		(iii) $\varepsilon = \varepsilon_f$ at absolute zero		
		(iv) $\varepsilon = \varepsilon_f$ at any temperature		
	(f)	Which gas at absolute zero temperature		
		possesses energy and exerts pressure?		
		(i) Oxygen gas		
		(ii) Photon gas		
		(iii) Electron gas		
		(iv) No gas		
2.	(a)	Derive Liouville theorem.	6	
	(b)	Give thermodynamic interpretation of		
		the Lagrange's undetermined multi-		
		pliers appearing in the distribution laws.	6	
3.	Deri	ive Boltzmann relation between entropy		
	and	probability.	5	
4.	Exp	ress internal energy in terms of partition		
	fund	etion.	5	
		Or		
	Esta	ablish the relation $S = kN \log Z + \frac{3}{2}kT$.	5	
		$z = \lambda u \cdot \log z + \frac{1}{2} k \cdot 1$	3	
7/691 (Turn Over)				