6 SEM TDC PHY G 1

2014

(May)

PHYSICS

(General)

Course: 601

(Electronics and Solid State Physics)

Full Marks: 56
Pass Marks: 22

Time: 21/2 hours

The figures in the margin indicate full marks for the questions

1. শুদ্ধ উত্তৰটো বাচি উলিওৱা:

1×6=6

: : :

Choose the correct option:

(a) জুল এককত জার্মেনিয়য় স্ফটিকর নিষিদ্ধ শক্তি অন্তরালর মান হ'ল

For germanium crystal, the forbidden energy gap in joules is

- (i) 1.12×10^{-19}
- (ii) 1.76×10^{-19}
- (iii) 1.6×10^{-19}
- (iv) 0.7×10^{-19}

(b) অর্ধ-তৰংগ্ সংদিশকৰ ক্ষেত্রত তৰংগটোৰ পৰিৱতী প্রৱাহ উপাংশৰ r.m.s. মান

In a half-wave rectifier, the r.m.s. value of the a.c. component of the wave is

- (i) একমুখী প্ৰৱাহৰ মানৰ সমান equal to d.c. value
- (ii) একমুখী প্ৰৱাহৰ মানতকৈ বেছি more than d.c. value
- (iii) একমুখী প্ৰৱাহৰ মানতকৈ কম less than d.c. value
- (iυ) শূন্য zero
- (c) কোনটো সজ্জা ব্যৱহাৰ কৰিলে ট্ৰেন্জিষ্টাৰ এটাই সুন্দৰ শক্তি সংবৰ্ধন দেখুৱায় ?

The transistor provides good power amplification when they are used in

- (i) কমন কালেক্টৰ সজ্জা common collector configuration
- (ii) কমন এমিটাৰ সজ্জা
 common emitter configuration
- (iii) কমন বেচ সজ্জা common base configuration
- (iv) ওপৰৰ এটাও নহয়

 None of the above

(d) এক বিশেষ স্ফটিক প্ৰণালীৰ জালিকা প্ৰাচলসমূহ হ'ল একক কোষৰ অক্ষসমূহ : $a = b \neq c$

অক্ষসমূহৰ মাজৰ কোণ : $\alpha = \beta = \gamma = 90^\circ$

তেন্তে স্ফটিক প্রণালীটো হ'ল

A particular crystal system has the following lattice parameters :

Unit cell axes : $a = b \neq c$

Angle between axes : $\alpha = \beta = \gamma = 90^{\circ}$

Then the crystal system will be

- (i) ট্রাইক্লিনিক triclinic
- (ii) অৰ্থ'ৰ'ম্বিক orthorhombic
- (iii) টেট্টাগ'নেল tetragonal
- (iv) কিউবিক cubic
- (e) 0 K উঞ্চতাত মুক্ত ইলেক্ট্রন গেছ এবিধৰ গড় গতিশক্তিহ'ল

The average kinetic energy of a free electron gas at 0 K is

(i)
$$\frac{3}{5}E_F$$

(ii)
$$\frac{5}{2}E_F$$

(iii)
$$\frac{3}{2}E_F$$

য'ত E_F হ'ল ফার্মি শক্তি।

where E_F is Fermi energy.

(f) কঠিন অৱস্থাৰ পদাৰ্থ এটাত ইলেক্ট্ৰনৰ কাৰ্যকৰী ভৰ হ'ল
The effective mass of the electron in a solid is given by

(i)
$$\frac{\hbar^2}{\left(\frac{d^2k}{dE^2}\right)}$$

(ii)
$$\frac{\hbar^2}{\left(\frac{d^2E}{dk^2}\right)}$$

(iii)
$$\frac{\left(\frac{d^2E}{dk^2}\right)}{\hbar^2}$$

$$(iv) \frac{\left(\frac{d^2k}{dE^2}\right)}{\hbar^2}$$

- 2. তলত দিয়া যি কোনো ছটা প্ৰশ্নৰ উত্তৰ লিখা : 2×6=12

 Answer any six questions from the following :
 - (a) বিশুদ্ধ অর্ধ-পৰিবাহী এটাত আভ্যন্তৰিক গাঢ়তাৰ সৈতে হ'ল গাঢ়তা আৰু ইলেক্ট্ৰনৰ গাঢ়তাৰ সম্পৰ্ক কোন? How are hole concentration and electron concentration related to the intrinsic concentration in pure semiconductors?

- (b) সংদিশন কি? অর্ধ-তবংগ সংদিশক এটাৰ গড় আউটপুট বিভৱৰ মান কিমান? What is rectification? What is the average output voltage of a half-wave
- (c) α আৰু βৰ মাজৰ সম্পৰ্ক ব্যুৎপাদন কৰা।

 Derive a relationship between α and β.
- (d) স্পদ্দনৰ বাবে বাৰ্কহাউচেন চৰ্ত কি?
 What is Barkhausen criterion for oscillation?
- (e) ফাৰ্মি ন্তৰ কি? What is Fermi level?

rectifier?

- গ্ৰে কাৰ্মি শক্তিৰ মান 8 eV হ'লে 0 K উপ্কতাত ইলেষ্ট্ৰন এটাৰ গড় শক্তিত ইয়াৰ বেগ কিমান হ'ব? Calculate the speed of electron at its mean energy at 0 K, if the Fermi energy is 8 eV.
- (g) স্ফটিক এটাত কোনো এক তলে স্ফটিকীয় অক্ষসমূহক 2a, 3b আৰু c দ্ৰত্বত ছেদ কৰিছে। তলখনৰ মিলাৰ সংস্চকসমূহ নির্ণয় কৰা।

In a crystal, a plane cuts intercepts 2a, 3b and c along the crystallographic axes. Determine the Miller indices of the plane.

- 3. (a) ব্ৰেকডাউনৰ বিভিন্ন প্ৰকাৰসমূহ কি কি? ইহঁতৰ প্ৰত্যেকৰে কাৰ্যপ্ৰণালী ব্যাখ্যা কৰা। 4 What are the different types of breakdown? Explain the mechanism of each of them.
 - (b) সম্পূর্ণ-তবংগ সংদিশক এটাৰ ক্ষেত্রত দেখুওৱা যে r.m.s. প্রৱাহব মান হ'ল $\frac{I_0}{\sqrt{2}}$, য'ত I_0 হ'ল প্রৱাহব শীর্ষ মান। সম্পূর্ণ-তবংগ সংদিশকব বাবে $I_{d.c.}$ ৰ মান কিমান হ'ব? 3+2=5 Show that in a full-wave rectifier, the r.m.s. current is $\frac{I_0}{\sqrt{2}}$, where I_0 is the peak value. What is the value of $I_{d.c.}$ for a full-wave rectifier?

অথবা /Or

দেখুওৱা যে চিলিকন পৰিবাহী এটাৰ ক্ষেত্ৰত মুঠ অপৱাহী প্ৰৱাহৰ মান হ'ল $J=q(p\mu_h+n\mu_e)E$, য'ত q= বাহক এটাৰ আধান, $\mu_h=$ হ'লৰ সচলতা, $\mu_e=$ ইলেক্ট্ৰনৰ সচলতা, p= হ'লৰ সংখ্যা, n= ইলেক্ট্ৰনৰ সংখ্যা, n= ইলেক্ট্ৰনৰ সংখ্যা, n= ইলেক্ট্ৰনৰ সংখ্যা, n=

Show that the total drift current in a silicon conductor is $J = q(p\mu_h + n\mu_e)E$, where q = charge on a carrier, $\mu_h =$ mobility of holes, $\mu_e =$ mobility of electrons, p = number of holes, n = number of electrons, n = electric field.

5

- (c) সঠিক বর্তনী চিত্রৰ সহায়ত এটা ফেজ-শ্বিফ্ট দোলকৰ স্পদন কম্পনাংকৰ প্রকাশবাশি উলিওৱা। 6

 Obtain an expression for the frequency of oscillation with proper circuit diagram of a phase-shift oscillator.
- (d) ট্ৰেন্জিষ্টাৰ সংবৰ্ধক এটাৰ সংকাৰক বিন্দু কি? সংকাৰক বিন্দু কেনেকৈ নিৰ্ণয় কৰিব পাৰি? 2+2=4

 What is operating point of a transistor amplifier? How one can choose the operating point?
- 4. (a) কিউবিক জালিকা এখনৰ ক্ষেত্ৰত জালিকা বিন্দুৰ সংখ্যাৰ প্ৰকাশৰাশি উলিওৱা। 3 Obtain an expression for the number of lattice points in a cubic lattice.
 - (b) সৰল কিউবিক, বডি চেন্টার্ড কিউবিক আৰু ফেচ চেন্টার্ড কিউবিক জালিকাৰ বাবে পাৰমাণৱিক পেকিঙ ফ্রেক্চন গণনা কৰা। 2+2+2=6

Calculate the atomic packing fraction for simple cubic, body-centred cubic and face-centred cubic lattice.

অথবা /Or

ব্ৰেগৰ নীতি কি? ব্ৰেগৰ X-ৰশ্মি বৰ্ণালীমাপন যন্ত্ৰ এটাৰ কাৰ্যপ্ৰণালী চমুকৈ বৰ্ণনা কৰা। 2+4=6

What is Bragg's law? Describe briefly the working of a Bragg's X-ray spectrometer.

- (c) মেইজ্নাৰ প্ৰভাৱ কি? Type–I আৰু Type–II অভি-পৰিবাহীৰ মাজৰ পাৰ্থক্য বুজাই লিখা। 2+3=5 What is Meissner effect? Distinguish between Type–I and Type–II superconductors.
- (d) ধাতু এবিধৰ তাপীয় পৰিবাহিতা কি ? বিদ্যুৎ পৰিবাহিতাৰ লগত ইয়াৰ সম্পৰ্ক কি ? 3+2=5 What is thermal conductivity of a metal? How is it related to the electrical conductivity?
