Total No. of Printed Pages-11

6 SEM TDC CHM M 7 (N/O)

2019

(May)

CHEMISTRY

(Major)

Course: 607

(Spectroscopy)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48

Pass Marks: 14

Time: 2 hours

1. Choose the correct answer:

 $1 \times 5 = 5$

- (a) Symmetric top molecules have
 - (i) two equal moments of inertia and one different
 - (ii) all the three moments of inertia equal
 - (iii) all the three moments of inertia different
 - (iv) all the moments of inertia zero

P9/748

(Turn Over)

- (b) The shift of an absorption maximum towards longer wavelength is known as
 - (i) hypsochromic effect
 - (ii) bathochromic effect
 - (iii) hyperchromic effect
 - (iv) hypochromic effect
- (c) The absence of absorption bands near 1600 cm⁻¹, 1580 cm⁻¹ and 1500 cm⁻¹ is a sure proof for the absence of
 - (i) aromatic ring
 - (ii) carbonyl group
 - (iii) —OH group
 - (iv) secondary amino group
- (d) The multiplicity of the signals in CH₃CH₂OCH₂CH₃ in NMR spectrum is
 - (i) two triplets
 - (ii) a triplet and a quartet
 - (iii) two singlets
 - (iv) two doublets

- (e) Using 4358 Å lines of mercury as the source of radiation, a Raman line was observed at 4447 Å. The Raman shift was
 - (i) 460 cm⁻¹
 - (ii) 89 cm⁻¹
 - (iii) 89×10⁻⁸ cm⁻¹
 - (iv) 460×10⁻⁸ cm⁻¹
- 2. Answer any five of the following: 2×5=10
 - (a) What do you mean by fundamental vibrations and overtones?
 - (b) What is mutual exclusion principle? Explain with examples.
 - (c) The nuclei like ¹²C and ¹⁶C do not exhibit NMR spectra. Explain why.
 - (d) What do you mean by a good solvent in UV spectroscopy and what is its effect on absorption maximum?
 - (e) Explain the effects of change of solvents on $n \to \pi^*$ and $\pi \to \pi^*$ transitions.
 - (f) HCl molecule is microwave active. Explain properly.

UNIT-I

3.	(a)	Discuss the effect of isotopic substitution on the rotational spectra of			
		a diatomic molecule.	21/2		
	d.				

(b) In the absorption rotational spectrum of CO, the first line has a wave number of 3.8424 cm⁻¹. Calculate the bond length between C and O atoms.

UNIT-II

- 4. (a) Show that the frequency of the absorbed radiation in pure vibrational spectra is equal to the fundamental frequency of vibration v₀ of the molecule.
 - (b) Sketch the normal modes of vibration of a linear triatomic molecule AB_2 and predict the IR active bands.

Or

Write a short note on fingerprint region.

(c) The force constant of HF is listed at 880 cm^{-1} . At what wave number is the fundamental $v = 0 \rightarrow v = 1$ vibrational absorption expected?

P9/748

(Continued)

3

2

2

3

UNIT-III

5.	(a)	What are Stokes and anti-Stokes lines?				
		Explain why the anti-Stokes lines	are			
		weaker than that of Stokes lines.	2+2=4			

(b) Discuss about the rotational Raman spectra in linear molecule.

Or

Write any three differences between Raman spectra and infrared spectra. 3

UNIT-IV

6. (a) Describe the terms chromophores, auxochromes, bathochromic shift and hypsochromic shift giving examples.

(b) Write the selection rules for electronic transitions.

Or

Explain why ethanol is a good solvent for UV measurement but not for IR.

(Turn Over)

2

2

3

UNIT-V

7.	(a)	Discuss briefly	the	principle	of	NMR	
		spectroscopy.					

Or

What is chemical shift in NMR spectroscopy? Mention the factors that affect chemical shift. 2+2=4

(b) Explain why TMS is used as internal standard in NMR spectroscopy.

Or

Describe the ESR spectrum of a single electron in contact with a single proton. 2

(c) Describe briefly spin-spin relaxation process.

1

2

4

(Old Course)

Full Marks: 48

Pass Marks: 19

Time: 3 hours

1. Choose the correct answer:

 $1 \times 5 = 5$

- (a) Raman effect is
 - (i) absorption of light
 - (ii) emission of light
 - (iii) inelastic scattering of light
 - (iv) elastic scattering of light
- (b) The internal energy of a molecule is its
 - (i) rotational energy
 - (ii) vibrational energy
 - (iii) translational energy
 - (iv) All of the above
- (c) The radiation in the wavelength range 400 nm-800 nm corresponds to
 - (i) ultraviolet
 - (ii) infrared
 - (iii) visible
 - (iv) far IR

(Turn Over)

P9/748

- (d) The electronic spectra consist of
 - (i) a large number of absorption bands
 - (ii) a large number of closely packed lines
 - (iii) a large number of peaks
 - (iv) None of the above
- (e) The molecule which is microwave active is
 - (i) HCl
 - (ii) CO2
 - (iii) H₂
 - (iv) N_2
- **2.** Answer any five of the following: $2 \times 5 = 10$
 - (a) Water is a good solvent for UV and visible spectroscopy but not for IR spectroscopy. Explain.
 - (b) Explain mutual exclusion principle with example.
 - (c) What do you mean by fundamental vibrations and overtones?
 - (d) Microwave studies are done only in gaseous state. Why?

P9/748

- (e) What is 'hot band' in vibrational spectra?
- (f) Explain Fermi resonance with one example.

UNIT-I

- 3. (a) The rotational spectra of HF have lines
 41.9 cm⁻¹ apart. Calculate the bond
 length of H—F bond in HF. 2½
 - (b) Discuss the effect of isotopic substitution on the rotational spectra of a diatomic molecule.

UNIT-II

- 4. (a) Roughly sketch the fundamental vibrations of water molecule. Show how many of them are IR active and Raman active.
 - .bigiourng 2
 - (b) Explain fundamental frequencies and combination bands with example. 3

(Turn Over)

Or

		Calculate the force constant for H ³⁵ Cl	
		from the fact that the fundamental	
		vibrational frequency is 8.667×10 ¹³ s ⁻¹ .	3
	(c)	Sketch the normal modes of vibration of	
		a linear triatomic molecule AB ₂ and	
		predict the IR active bands. Give reason	_
		in support of your answer.	3
	hard.		
		UNIT—III	
5.	(a)	State and explain the rule of mutual	
		exclusion principle with example.	3
	(b)	Write the difference between Raman	
		spectra and IR spectra.	3
	(c)	Mention the essential conditions for a	
		molecule to be Raman active.	1
		UNIT—IV	
6.	(a)	State and explain Franck-Condon	
		principle.	3
	(b)	Explain the effects of change of solvents	
	2.00	on $n \to \pi^*$ and $\pi \to \pi^*$ transitions.	2
	(c)	Define chromophore with example.	1
			4

P9/748

(Continued)

UNIT-V

7.	(a)	Discuss	briefly	the	principle	of	NMR	
		spectros	copy.					4

(b) Draw the high resolution NMR spectra of 1-chloropropane and 2-chloropropane. 1+1=2

(c) Define coupling constant.

* * *