6 SEM TDC CHM M 7 (N/O)

2018

(May)

CHEMISTRY

(Major)

Course: 607

(Spectroscopy)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48

Pass Marks: 14

Time: 2 hours

1. Choose the correct answer:

 $1 \times 5 = 5$

- (a) Radio frequency radiations are useful in causing transition for
 - (i) mass spectrum
 - (ii) NMR spectrum
 - (iii) Raman spectrum
 - (iv) None of the above

- (b) An auxochrome is one which is
 - (i) colour enhancing
 - (ii) a group or an atom with lone pairs of electrons
 - (iii) extending conjugation
 - (iv) All of the above
- (c) The IR band spectra show the changes in vibrational and rotational energies of a molecule subject to selection rule
 - (i) $\Delta v = 0$, $\Delta j = \pm 1$
 - (ii) $\Delta v = \pm 1$, $\Delta j = \pm 1$
 - (iii) $\Delta v = \pm 1$, $\Delta j = \pm 2$
 - (iv) $\Delta v = 0$, $\Delta j = 0$
- (d) Raman effect is
 - (i) absorption of light
 - (ii) emission of light
 - (iii) inelastic scattering of light
 - (iv) elastic scattering of light
- (e) The multiplicity of signals in CH₃CH₂OCH₂CH₃ in NMR spectrum is
 - (i) two triplets
 - (ii) one triplet and one quartet
 - (iii) two singlets
 - (iv) two singlets and two triplets

- **2.** Answer any *five* of the following: $2 \times 5 = 10$
 - (a) Compared to the number of bonds in a molecule, there are generally more number of peaks in the infrared spectrum. Explain.
 - (b) The nuclei ¹H and ¹³C are suitable for NMR investigation. Explain why.
 - (c) Describe briefly 'fingerprint region' of infrared spectroscpy.
 - (d) Stokes lines are more intense than anti-Stokes lines. Explain.
 - (e) Microwave studies are done only in gaseous state. Why?
 - (f) Aniline absorbs at 280 nm, but in acidic medium this absorption band is seen at 203 nm. Explain giving proper reason.

UNIT-I

3. (a) Show that the lines in the rotational spectrum of a diatomic molecule are equispaced under rigid rotator approximation.

21/2

(b) Find the value of rotational quantum number j in the most highly populated rotational level of CH₄ (B = 5.24 cm⁻¹) at room temperature.

21/2

UNIT-II

4. (a) Explain the effect of anharmonicity on the vibrational spectra of diatomic molecules.

3

Or

Sketch the normal modes of vibration of a non-linear triatomic molecule AB_2 and predict the IR active bands. Give reason in support of your answer.

(b) Explain what will happen when a molecule is irradiated with infrared radiations.

2

(c) The C—H stretching vibration in chloroform occurs at 3000 cm⁻¹.

Calculate the C—D stretching frequency in deuterochloroform.

3

UNIT-III

5. (a) Explain the application of Raman spectroscopy in determining the structure of a molecule with specific examples.

3

(b) A sample was excited by the 4358 Å line of mercury. A Raman line was observed at 4447 Å. Calculate the Raman shift in cm⁻¹.

3

8P/806

(Continued)

Or

Discuss the quantum mechanical explanation of Raman effect.

(c) Write the condition for the molecule to be Raman active.

UNIT-IV

6. (a) State and explain Franck-Condon principle.

(b) Explain the effects of change of solvents on $n \to \pi^*$ and $\pi \to \pi^*$ transitions. 2

(c) What do you mean by a good solvent in UV spectroscopy?

UNIT-V

- 7. (a) Write two applications of ESR spectroscopy. Predict the number of lines in the ESR spectra of the following systems:

 1+1+1=3
 - (i) CH₃ CH₂
 - (ii) ČH₃

Or

Discuss briefly the principle of ESR spectroscopy.

3

1

3

(b) Discuss the relaxation processes in NMR spectroscopy.

3

Or

Describe Larmor precession and precessional frequency.

(c) Define coupling constant.

(Old Course)

Full Marks: 48

Pass Marks: 19

Time: 3 hours

1. Choose the correct answer:

 $1 \times 5 = 5$

- (a) In order to be microwave active
 - (i) the molecule must have permanent dipole moment
 - (ii) the dipole moment of the molecule must change during vibration
 - (iii) the polarizability of the molecule must change during vibration
 - (iv) None of the above
- (b) An auxochrome is one which is
 - (i) colour enhancing
 - (ii) a group or an atom with lone pairs of electrons
 - (iii) extending conjugation
 - (iv) All of the above
- (c) For a linear molecule such as HCl, the number of modes of vibration is
 - (i) 0
 - (ii) 1
 - (iii) 2
 - (iv) 3

- (d) Raman effect is
 - (i) absorption of light
 - (ii) emission of light
 - (iii) inelastic scattering of light
 - (iv) elastic scattering of light
- (e) The NMR spectroscopy is useful for the detection of
 - (i) hydrogen bonding
 - (ii) aromaticity
 - (iii) geometrical isomers
 - (iv) All of the above
- **2.** Answer any five of the following: $2 \times 5 = 10$
 - (a) What do you mean by a good solvent in UV spectroscopy and what is its effect on absorption maximum?
 - (b) Explain the fundamental vibrations and overtones.
 - (c) Microwave studies are done only in gaseous state. Explain why.
 - (d) Stokes lines are more intense than anti-Stokes lines. Explain.
 - (e) Write the selection rules for electronic transitions.
 - (f) Explain why TMS is used as a reference substance in NMR spectroscopy.

UNIT-I

3.	(a)	Show that the	he lines	in the r	otational
		spectrum of	a diaton	nic mole	cule are
		equispaced	under	rigid	rotator
		approximatio	n.		21/

(b) The rotational spectrum of HCl molecules shows that the rotational lines are equally separated by 20.70 cm⁻¹. Calculate the internuclear bond length.

21/2

UNIT-II

4. (a) Show that the frequency of the absorbed radiation in pure vibrational spectra is equal to the fundamental frequency of vibration v_0 of the molecule.

3

Or

Explain fundamental frequencies, overtones and combination bands with examples.

(b) Calculate the force constant for H³⁵Cl from the fact that the fundamental vibrational frequency is 8.667×10¹³ s⁻¹.

3

(c) Briefly describe Fermi resonance.

UNIT-III

5. (a) Explain the application of Raman spectroscopy in determining the structure of a molecule with specific examples.

3

(b) Discuss the quantum mechanical explanation of Raman effect.

3

(c) Write the condition for the molecule to be Raman active.

1

UNIT-IV

6. (a) State and explain Franck-Condon principle.

3

(b) The intensity of $\pi \to \pi^*$ transitions is 10 to 100 times stronger than $n \to \pi^*$ transitions. Explain.

2

Or

Distinguish redshift from blueshift with one example.

(c) What informations can be obtained from molar extinction coefficient?

UNIT-V

- 7. (a) Write two applications of ESR spectroscopy. Predict the number of lines in the ESR spectra of the following systems:

 1+1+1=3
 - (i) CH3 CH2
 - (ii) CH₃

Or

Explain spin-spin splitting.

3

- (b) What is chemical shift in NMR spectroscopy? Mention the factors that affect chemical shift. 1+2=3
- (c) Define coupling constant.

* * *