6 SEM TDC CHM M 1

2014

(May)

CHEMISTRY

(Major)

Course: 601

(Physical)

Full Marks: 48
Pass Marks: 19

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct option :

- $1 \times 5 = 5$
- (a) Bioluminescence is a form of
 - (i) chemiluminescence
 - (ii) photoluminescence
 - (iii) electroluminescence
 - (iv) cathodoluminescence

- (b) A sample of polystyrene has number average molecular weight of 104000. Its number average degree of polymerization is
 - (i) > 1000
 - (ii) < 1000
 - (iii) = 1000
 - (iv) None of the above
- (c) The number of phases, components and degrees of freedom corresponding to the triple points of sulphur system is
 - (i) (3, 2, 1)
 - (ii) (3, 1, 0)
 - (iii) (4, 2, 0)
 - (iv) (2, 2, 2)
- (d) The adsorption theory explains
 - (i) homogenesous catalysis
 - (ii) acid-base catalysis
 - (iii) enzyme catalysis
 - (iv) heterogeneous catalysis

- (e) A collection of a large number of independent assemblies, having same temperature T, volume V, and number of identical systems N is called
 - (i) micro-canonical ensemble
 - (ii) canonical ensemble
 - (iii) grand canonical ensemble
 - (iv) None of the above
- **2.** Answer the following questions: $2 \times 5 = 10$
 - (a) What is meant by photosensitization? Give example.
 - (b) Distinguish between homopolymers and copolymers.
 - (c) Explain the action of catalytic promoters and catalytic poison.
 - (d) What do you mean by peritectic phase transition? Give one example.
 - (e) Define thermodynamic probability.

 Give the relationship between thermodynamic probability and entropy.

3. Answer any two questions of the following:

31/2×2=7

- (a) Define quantum yield. How do you account for the low and high quantum yields in a photochemical reaction?

 What is laser? 1+2+½=3½
- (b) The decomposition of HI takes place by the following mechanism:

$$HI + hv \rightarrow H + I$$

 $H + HI \rightarrow H_2 + I$
 $I + I \rightarrow I_2$

Find the expression for the rate of the reaction. What is the quantum efficiency of the reaction? $3+\frac{1}{2}=3\frac{1}{2}$

(c) Thermodynamically non-spontaneous reaction may also take place spontaneously in presence of light. Explain.

31/2

4. Answer either (a) or (b):

5

(a) (i) Define number-average and weight-average molecular weights of polymer. A polymer sample composed of molecules of three sizes. Out of which 10 moles of first size have molecular weight 10000, 80 moles of second size have

molecular	weigh	t 50	000	and	
10 moles	1000				
molecular	weight 1	00000	. Cal	culate	
the num	ber-ave	rage	mole	ecular	
weight of t	he sam	ple.		2+11/2=	31/2

- (ii) What is Zeigler-Natta catalyst? Give one example. 1+½=1½
- (b) (i) Discuss the kinetics of free radical chain growth polymerization. 3½
 - (ii) What is glass transition temperature? Explain. 1½

5. Answer either (a) or (b):

(a) Explain giving examples the theories of acid-base catalysis. Discuss the efficiency of metal nano-particles in heterogeneous catalysis. 3½+1½=5

- (b) What is enzyme catalysis? Deduce
 Michaelis-Menten equation for enzyme
 catalysis. "Enzyme catalysts are highly
 specific." Explain.

 1+3+1=5
- **6.** Answer any *two* questions of the following: $4\frac{1}{2} \times 2 = 9$
 - (a) Derive the phase rule thermodynamically. Write the reduced phase rule equation for a condensed system.

4+1/2=41/2

5

(Turn Over).

(b) Construct the phase diagram for Zn-Mg system from the following data:

Melting point of Zn = 419 °C Melting point of Mg = 651 °C

A congruently melting compound $\mathrm{Mg}_X \mathrm{Zn}_Y$ at 15% by mass of Mg melting at 599 °C. The lowest freezing point of Zn observed is 368 °C for composition containing 3.3% Mg by mass and that for Mg at 347 °C for a composition containing 49% by mass of Mg. Determine the molecular formula of the compound $\mathrm{Mg}_X \mathrm{Zn}_Y$. Comment on the stabillity of the compound $\mathrm{Mg}_X \mathrm{Zn}_Y$.

21/2+1+1=41/2

1

- (c) (i) "Melting point curve in the phase diagram of water shows a negative slope." Explain.
 - (ii) Discuss the phase diagram of KI-H₂O system. 3½
- 7. Answer any *two* questions of the following: $3\frac{1}{2} \times 2 = 7$
 - (a) What do you mean by partition function? Discuss the physical significance of partition function. Define molar partition function. 1+1½+1=3½

(b)	Derive an	expression	for	transla	ational	
	partition	function	for	an	ideal	
	monatomic	gas using	part	icle in	a box	
	model.					31

(c) Derive Sackur-Tetrode equation. 31/2