4 SEM TDC CHM M 1 (N/O)

2020

CHEMISTRY

(Major)

Course: 401

(Physical Chemistry)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48
Pass Marks: 14

Time: 2 hours

- 1. Choose the correct answer from the following:
 - (a) A current of 0-1 A is passed through an aqueous solution of copper sulphate for 15 minutes using platinum electrode. The amount of copper deposited at the cathode is
 - (i) 0.02963 g
 - (ii) 2·808×10²⁰ g
 - (iii) 0.05703 g
 - (iv) 0.6375 g

- (b) At 300 K, the value of $\Delta G \Delta A$ is zero for the reaction
 - (i) H_2O_2 (g) = $H_2O(g) + \frac{1}{2}O_2(g)$
 - (ii) $CO_2(g) + H_2(g) = CO(g) + H_2O(g)$
 - (iii) $PC1_5(g) = PC1_3(g) + C1_2(g)$
 - (iv) $N_2(g) + 3H_2(g) = 2NH_3(g)$
- (c) The observed conductance is maximum for
 - (i) 0.1 M KCl solution
 - (ii) 0.1 M NaOH solution
 - (iii) 0.1 M HCl solution
 - (iv) 0.1 M CH3COOH solution
- (d) Electrode potential of a standard hydrogen electrode is
 - (i) 1.0 V
 - (ii) 0 V
 - (iii) -1.0 V
 - (iv) 0.5 V
- (e) The correct order of mobility of the alkali metal ions in aqueous solution is
 - (i) $K^+ > Rb^+ > Na^+ > Li^+$
 - (ii) $Rb^+ > K^+ > Na^+ > Li^+$
 - (iii) $Li^+ > Na^+ > K^+ > Rb^+$
 - (iv) $Na^+ > K^+ > Rb^+ > Li^+$

- 2. Answer any five questions from the following: 2×5=10
 - (a) Show that for a reversible phase transformation, Gibbs' free energy change is zero.
 - (b) Distinguish a reversible cell from an irreversible cell.
 - (c) Why does the variation of equivalent conductivity on dilution of a strong electrolyte differ from that of a weak electrolyte?
 - (d) Describe standard hydrogen electrode.
 - (e) Explain the physical significance of Gibbs' free energy and Helmholtz free energy.
 - (f) Calculate the entropy change for the fusion of 1 mole of ice at 0 °C. Given $\Delta H_{\text{fus}(\text{ice})} = 334.72 \text{ J g}^{-1}$.
- 3. Answer any *two* questions from the following: $4\frac{1}{2} \times 2 = 9$
 - (a) Deduce an expression for the entropy changes associated with the changes in temperature and pressure of an ideal gas.

 4½

1	b)	(i)	Prove	that
ı	~	/	U	TIOVE	mat

$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V}$$

$$2\frac{1}{2}$$

2

- (ii) State and explain Nernst's heat theorem.
- (c) (i) State and explain the third law of thermodynamics. 11/2
 - (ii) Calculate the entropy change accompanying the freezing of one mole of water at 25 °C to ice at -10 °C, given that the heat of fusion of ice at its fusion point (0 °C) is 6.00 kJ mol⁻¹, the heat capacity of ice is 36.82 JK⁻¹ and heat capacity of liquid water is 75.31 JK⁻¹ mol⁻¹.
- **4.** Answer any *two* questions from the following: $7 \times 2 = 14$
 - (a) (i) Represent the variation of equivalent conductance of KCl and CH₃COOH with dilution graphically and give explanation for such variation.
 - (ii) What are ionic mobilities? Derive a relation between ionic mobility and molar ionic conductance. 1+2=3

20P/764

4

(b) (t)	of independent migration of ions.				
(ii) (iii)	The ionic conductivities of Li ⁺ and Na ⁺ ions are 38·7 ohm ⁻¹ cm ² mol ⁻¹ and 50·1 ohm ⁻¹ cm ² mol ⁻¹ respectively. Calculate their mobilities.	3 1			
(c) (i)	Explain how the degree of hydrolysis and hydrolysis constant of aniline hydrochloride can be determined from conductance				
(ii)	measurement. Sketch schematically the conductometric titration curve for a strong base by a weak acid and describe it. 1+2	4 !=3			
5. Answer following	any <i>two</i> questions from the : $5\times 2=$	10			
	ive an expression for the e.m.f. of a centration cell with transference.	5			
(b) (i)	With the help of mathematical expression, explain how the cell e.m.f. is used in calculating ΔG , ΔH and ΔS for a cell reaction.	3			
20P/ 764	(Turn Ove	er)			

- (ii) Draw a schematic diagram of H₂—O₂ fuel cell. 2
- (c) (i) Derive an equation showing the effect of electrolyte concentration on electrode potential.
 - (ii) Calculate the potential of the following cell at 298 K:

$$Zn(s) |Zn^{2+}(a=0.1)| |Cu^{2+}(a=0.01)| |Cu(s)$$

Given,
$$E_{\text{Zn}^{2+}/\text{Zn}}^{\circ} = -0.762 \text{ V}$$

 $E_{\text{Cu}^{2+}/\text{Cu}}^{\circ} = +0.337 \text{ V}$

3

2

(Old Course)

Full Marks: 48
Pass Marks: 19

Time: 3 hours

- 1. Choose the correct answer from the following: 1×5=5
 - (a) Li⁺ has a smaller ionic mobility than K⁺ because of the
 - (i) larger size of Li+
 - (ii) larger radius to charge ratio of Li+
 - (iii) greater degree of hydration of Li+
 - (iv) smaller nuclear charge of Li+
 - (b) When one faraday of electricity is passed through CuSO₄ solution, number of atoms formed at cathode will be
 - (i) 6.02×10²³
- (ii) 3·01×10²³

(iii) 2

- (iv) 6.02×10⁻²³
- (c) For a standard hydrogen electrode, the electrode potential is
 - (i) 1.0 V
- (ii) 0 V
- (iii) -1·0 V
- (iv) 0.5 V

- (d) The equilibrium which is not affected by pressure changes is
 - (i) $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$
 - (ii) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$
 - (iii) $20_3(g) \rightleftharpoons 30_2(g)$
 - (iv) $2NO_2(g) \rightleftharpoons N_2O_4(g)$
- (e) Standard electrode potentials of three metals X, Y and Z are -1.2 V, +0.5 V and -3.0 V respectively. The reducing power of three metals will be
 - (i) Z > X > Y
 - (ii) X > Y > Z
 - (iii) Y > Z > X
 - (iv) Y > X > Z
- **2.** Answer the following questions: $2 \times 5 = 10$
 - (a) Define chemical potential. What is its physical significance?
 - (b) Why does the variation of equivalent conductivity on dilution of a strong electrolyte differ from that of a weak electrolyte?
 - (c) Describe standard hydrogen electrode.
 - (d) Distinguish a reversible cell from an irreversible cell.
- (e) What is liquid junction potential?

 20P/764 (Continued)

- 3. Answer any two questions from the following: $7\times2=14$
 - (a) (i) Represent the variation of equivalent conductance of KCl and CH₃COOH with dilution graphically and give explanation for such variation.
 - (ii) What are ionic mobilities? Deduce a relation between ionic mobility and molar ionic conductance. 1+2=3
 - (b) (i) State and explain Kohlrausch's law of independent migration of ions.
 - (ii) Calculate the equivalent and molar conductances of aqueous BaSO₄ solution at infinite dilution. Given

$$\Lambda_{\frac{1}{2}\text{Ba(NO}_3)_2}^{\circ} = 135.04 \times 10^{-4} \ \Omega^{-1} \ \text{m}^2 \ \text{equiv}^{-1}$$

$$\Lambda_{\frac{1}{2}H_2SO_4}^{\circ} = 429.60 \times 10^{-4} \ \Omega^{-1} \ m^2 \ equiv^{-1}$$

$$\Lambda_{\text{HNO}_3}^{\circ} = 421.24 \times 10^{-4} \ \Omega^{-1} \ \text{m}^2 \ \text{equiv}^{-1}$$

(c) (i) Explain how the degree of hydrolysis and hydrolytic constant of aniline hydrochloride can be determined from conductance measurement.

4

4

4

3

		(49)	metric titration curve for a strong acid by a strong base and describe it. 1+2	2=3			
4.		swer owing	any two questions from the 5×2=	=10			
	(a)	(i)	Derive an expression for the e.m.f. of a concentration cell with transference.	4			
		(ii)	Write any one difference between galvanic cell and electrolytic cell.	1			
	(b) What is glass electrode? Describe how the pH of a solution can be measured with the help of glass electrode. 1+4=5						
	(c)		Show that the e.m.f. of a cell can be used to calculate the equilibrium constant of a cell reaction.	3			
		(ii)	Give a brief description of lead storage cell.	2			
5.	Answer any three questions from the following:						
	(a)	Disc	cuss the effect of temperature and ssure of chemical potential.	3			
	(b)	Esta	ablish the relationship between ΔG° K_c of a reversible reaction.	3			
20P/	764		(Continue				

- (c) Derive Gibbs-Duhem equation for twocomponent system.
- (d) (i) What is fugacity? Write its physical significance. 1+1=2
 - (ii) Write the effect of pressure on the following equilibrium:

3

 $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$
